Портал для автолюбителей

Генератор для велосипеда из шагового двигателя. Ветрогенератор из шагового двигателя Как сделать из шагового двигателя ветрогенератор

Вы, хоть понимаете, что пишете? Или пишете для того, чтобы человека поддержать в его начинаниях и он, потратив деньги на комплектующие для своей системы, в конечном итоге получил абсолютно неработоспособную вещь? Вы отвечаете: "Двигатель, как генер подойдет" - да, подойдет, но откуда вы взяли 1,1-1,5А? Это при каком напряжении? При какой скорости вращения ротора? Далее пишете: "Стандарт мощности 1м ленты, вроде, 5Вт..." - стандарта мощности тут нет, а ленты бывают и около 5Вт и около 14Вт, и около 7Вт на метр и др., а это очень большой разброс. Продолжаем: "Так как вы столько накрутили то вполне может хватить для заряда аккумулятора" - это, вообще, что означает? То, что чем сложнее, навороченнее и запутаннее схема, тем больше ее отдача и эффективность? Полная ерунда. Для зарядки 12В мотоаккума нужно около 14-15В при токе примерно 0,6-0,7А (для емкости примерно 7А/ч). Вы уверены, что система способна долговременно выдавать такие параметры? Ведь, чтобы зарядить разряженный аккум мотоцикла, 2-3-х часов не хватит. Считаете, также, что заряжать можно и от 18В? Да, можно, но электролит выкипит через неделю, если не раньше, и пластины посыпятся. Хороша рекомендация! Неприхотливы в зарядке - это не означает, что их можно заряжать любым напряжением. Далее Вы пишете: "Будет очень даже отлично, ведь вдруг забыл выключить свет и аккумулятор сел еще до того как успеет подзарядится" - говорите так, будто зарядка аккума происходит только в светлое время суток))) Это ветряк, а не солнечная батарея. При правильно работающей системе, при постоянном ветре, аккум вообще не должен разряжаться, если даже забыли выключить свет. Но идея фотоэлемента сама по себе хороша с точки зрения автоматизации. Далее: светодиодная лента, наверное, будет работать, как Вы говорите, и при 30 вольтах, однако, долго ли? Сопротивления ограничивают ток, да, но он же будет расти пропорционально повышению напряжения, а не оставаться постоянным! Диоды очень не любят превышения рабочего тока. Так, что результат известен: перегрев диодов и, как следствие, резкое снижение срока эксплуатации, либо выход их из строя крайне быстрый. Следом пишете: "Емкость также не критична, добавьте еще 1 пленочный конденсатор на 1 мкф" - для чего? Это что, фильтр помех? Почему тогда 1мкФ? И зачем там вообще фильтр? А, если не фильтр, а сглаживающий пульсации элемент, то тут как раз его емкость критична! Емкость - это основной параметр конденсатора вообще-то. А 1мкФ - это пустое место для описанной человеком системы, ничего он не сгладит. Даже 1000мкФ, которую хотел установить автор вопросов - очень мало для его задумки. Я бы понял, если бы это было 5000-7000 или даже 10000мкФ, а то и больше. В конце человек спрашивает, хватит ли мотоаккума, чтобы лента светилась всю ночь, и Вы отвечаете, что, мол, конечно, хватит. Вы изучали физику в школе? Или еще изучаете? Это было Ваше предположение пальцем в небо или хоть какой-нибудь элементарный расчет? Давайте прикинем очень грубо: человек писал, что хочет установить 10-15м ленты. Даже, если взять минимальные значения, т.е. 10м ленты мощностью 5Вт/м, то путем нехитрых подсчетов получаем 50Вт мощности. Поделив мощность ленты на напряжение аккума (примерно 12,8В) получим ток: 50/12,8=3,9А. Емкость обычного мотоаккума примерно равна 7А/ч. Т.о. можно прикинуть, сколько времени проработает лента от полностью заряженного аккума: 7/3,9=1,79ч=1ч 47мин., т.е. почти два часа. Это далеко не вся ночь. К тому же, в расчет взяты минимальные параметры и, если длина ленты или/и ее мощность будут больше, соответственно время работы от аккума пропорционально уменьшится. Вот, как-то так.
Я бы не стал всего этого писать, но дело в том, что лента стоит денег, аккум и фотореле тоже... И деньги это немалые, а чел, получивший одобрение и поддержку своей идеи в комментах людей, не понимающих сути и нюансов процесса, радостно побежит в магаз, потратит деньги на комплектующие, а в итоге получит систему, неработоспособную в принципе, изначально. Не надо давать советы, не разбираясь в вопросе!

Пришла в голову простая, очевидная, но гениальная мысль. Ведь если учесть, что шаговый двигатель является не только моторчиком, который обеспечивает механическую работу абсолютно разных устройств (начиная от принтеров сканеров и другой офисной аппаратуры, заканчивая различными агрегатами, применяемыми в более серьезных устройствах). Шаговый двигатель так же может послужить отличным генератором электричества!

А его самый главный плюс во всем, это то, что ему вовсе не требуются большие обороты, он вполне может исправно работать и при малых нагрузках. То есть даже при минимальном действии силы направленной на него, шаговый двигатель отлично вырабатывает энергию. Самое главное, что этой энергии вполне хватит на различные нужды, вроде освещения дороги велосипедисту с помощью подключенного к шаговому двигателю фонаря.

К сожалению с обычным генератором стандартному велосипеду будут все же необходимы начальные обороты, до того как фонарик начнет испускать лучи достаточно яркого света для четкого освещения пути. Но при использовании шагового двигателя этот недостаток удаляется сам собой, то есть освещение будет подаваться сразу как только начнется вращение колеса.

Но правда у этой чудо конструкции все же будет ряд недочетов. Например наиболее явный из них, это большое магнитное залипание. Но на самом деле это не так страшно для велосипедиста.

Что приступая к работе нам будет необходимо найти некоторые детали:
1) Собственно сам шаговый двигатель.
2) парочка конденсаторов большой емкости.
3) светодиодные фонари
4) стабилизатор напряжения 5-6 вольт.

Найти шаговый двигатель довольно просто в силу того, что он весьма распространен во всех офисных приборах. Единственное что нужно понимать, это то, что чем больше шаговый двигатель - тем соответственно лучше для нас.

Тут будет описано и представлено несколько моделей шаговых двигателей и различные варианты их крепления к железному коню.
Для начала возьмем самый большой двигатель, что удалось раздобыть автору. Он демонтировал его из обычного офисного плоттера для печати(по сути это принтер, только в несколько раз большего размера).

Внешне двигатель довольно велик.

Но прежде чем приступить к изучению схемы стабилизации так же схемы питания, стоит обратить внимание на методику крепления этого агрегата к велобайку.

Если взгляните на рисунок, то поймете, что генератор расположен ближе к оси колеса и вращение передается от дополнительного круга.

И все же так как модель велосипеда у каждого своя и кто-то не захочет повреждать раму саморезами, вам будет нужно самому разработать крепление а так же круг вращения, вариантов тут действительно много.

Если же вы не представляете себе как прикрутить большой шаговый двигатель к конструкции, есть вариант поменьше:



Вам остается только выбрать вариант генератора, подходящего под размеры вашего транспортного средства.

Чтож когда с шаговыми двигателями разобрались, можно приступить и к фонарям и цепям питания.


Фонари необходимо взять светодиодные. схема выпрямления будет выглядеть так: блок выпрямительных диодов, несколько конденсаторов большой ёмкости и естественно стабилизатор напряжения. В принципе это стандартная схема питания.

Шаговый двигатель стандартно имеет на выходе четыре проводка, которые соответствуют двум катушкам. именно по этой причине на изображении выпрямительных блока тоже два. Этот самодельный генератор электричества вполне может выдавать аж до 50 вольт напряжения на больших оборотах, так что, конденсаторы лучше взять соответственные(напряжение выше 50). Ну а стабилизатор на напряжение 5-6 вольт.

И так в чем же суть самоделки, и почему она понадобилась?

Все дело в его преимуществе, даже только тронувшись с места- вам путь будет уже ярко освещен фонарем, запитанным от нашего шагового двигателя- он же генератор.

Так же хотелось бы отметить, что в процессе движения фонарь не будет мигать или тухнуть- освещение будет плавным и ровным.

Ветрогенератор в домашних условиях может стать дополнительным источником электроэнергии. Особенно он будет полезен в тех случаях, когда отключили свет, а вам необходимо зарядить какое-либо устройство. Можно такой ветрогенератор подключить и к фонарю уличного освещения во дворе, при этом экономить на электроэнергии. Вообще, найти применение в хозяйстве этому устройству всегда можно. Тем более что сделать его можно практически из подручных материалов.

В этой статье мы расскажем, как сделать простой ветрогенератор из шагового двигателя.

Что понадобится для сборки ветрогенератора?

Для того чтобы собрать ветрогенератор из шагового двигателя, понадобятся следующие детали:

  • собственно мотор;
  • листовой металл;
  • алюминиевая трубка;
  • фланец (1/4");
  • квадратная труба;
  • диск от пилы;
  • штифт;
  • хомуты (можно использовать от автомобиля);
  • трубы ПВХ разных размеров (например, 8x4, 30x8);
  • шайбы, болты и прочее для крепления деталей;
  • диоды.

Из инструментов пригодятся ножовка, разводной и газовый ключ, наждачка, рулетка, дрель, транспортир и рулетка.

Принцип работы ветрогенератора

Детально останавливается на том, как же работает ветрогенератор из шагового двигателя, не стоит. Ведь все такие генераторы имеют одинаковый принцип работы: ветер заставляет вращаться лопасти ветряка, в результате чего начинает работать генератор, который и вырабатывает электричество.

Изготовление ветрогенератора

Первое с чего следует начать – это вырезать лопасти. Для этого мы будем использовать ПВХ-трубы.

Что нужно учесть, вырезая лопасти?

  • Длину каждой лопасти – чем она больше, тем легче они будут крутиться при слабом ветре, но при этом они будут иметь довольно низкую скорость вращения.
  • Вращение будет больше на концах лопастей генератора – этот момент необходимо учесть заранее и рассчитать отношение скорости ветра к скорости вращения лопастей.
  • Помните, что мощность, получаемая из ветра, будет приравниваться к скорости ветра в третьей степени. Хотя не забывайте и о законе Беца, который говорит, что от энергии ветра можно получить приблизительно 59,3 процентов энергии.
  • Чем выше поднять ветряк от земли, тем более эффективен он будет (энергии будет вырабатываться больше).

Изготовить лопасти не составит больших проблем. Для этого нужно будет разрезать трубу из ПВХ на три части: две по 150 градусов и одна 60, как показано на рисунках.

Заметим, что два отрезка трубы (150 0) подойдут для широких лопастей. При желании вы сможете их подрезать до нужной ширины.

Следующая задача изготовить хаб – узел крепления лопастей. Для этих целей подойдет диск для пилы со сточенными зубьями. В нем нужно будет сделать шесть отверстий (три группы по 2 в каждой). Отверстия делаются со смещением в 120 0 , а расстояние между ними в одной группе должно быть около дюйма. Размещение отверстий на диске показано на рисунке:

В данном случае мы используем три лопасти, хотя можно установить и шесть: тогда группы отверстий будут смещаться на 60 0 . К заготовленному диску с отверстиями прикручиваем лопасти – крепим их посредством болтов и гаек.

Следующий этап работ – это шарнир для поворота и флюгер. Потребуется и поворотная платформа, на которую мы закрепим генератор. Выглядеть все это будет так:

Для изготовления этой конструкции нужна квадратная труба из ПВХ, кусок листового металла и фланец. «Хвост» ветрогенератора вырезаем из железа. В квадратной трубе делаем разрез 20-25 сантиметровдлиной и вставляем туда наш флюгер – закрепляем эту конструкцию болтами.

Кстати, не мешало бы продумать и защиту генератору от осадков. Например, ее можно сделать из трубы так, как показано на фотографии:

Дальше окрашиваем все детали нашего ветряка и даем им высохнуть. После этого собираем все в одно целое, крепим двигатель, чехол к трубе посредством автомобильных хомутов. Также необходимо установить фланец (его располагают ближе к двигателю) с помощью саморезов.

Теперь остается только сделать матчу для ветрогенератора. Для этих целей подойдет труба из ПВХ и фурнитура, которая используется с пластиковыми трубами. Сделать мачту можно так:

Последним этапом будет непосредственное крепление ветрогенератора к мачте и его установка. Перед этим на вал мотора насаживаем ранее изготовленный хаб с лопастями. Вот и все.

В заключение несколько слов о батарейном отсеке ветряка. Для него могут быть использованы два аккумулятора (например, автомобильные). Между генератором и аккумуляторами нужно будет припаять диоды, чтобы ток поступал именно в аккумуляторы, а не шел в генератор.

Такой домашний ветрогенератор подойдет для зарядки аккумуляторов и других целей. Вы также можете поэкспериментировать и сделать более мощный ветряк: например, добавить лопасти, изменить их размер и пр.

Я уже писал в начале лета о самодельном ветряке – анемометре.

Его целью было организовать сбор статистики о ветре и принятие на ее основе решения о постройке большого серьезного ветряка. К сожалению, не нашлось ни программиста, желающего написать программу обработки данных с анемометра, ни специалиста по микроконтроллерам, для создания соответствующего прибора. Поэтому, увы пришлось наблюдать за ветром визуально, благо флюгер был всегда на виду. И к сожалению, наблюдения эти крайне удручающие…

Дело в том, что ветер в средней полосе европейской части России обладает крайней турбулентностью в своих приземных слоях. Буквально в течении 3-5 минут ветряк многократно и останавливается (или сильно замедляется) и раскручивается так, что лопастей не видно. При этом и направление ветра меняется в секторе до 90-120 градусов. Крайне редко бывают дни когда дует относительно сильный и ровный ветер. За все лето в моей местности таких дней было всего 4. Было несколько штилевых дней. А в остальные — ветер был очень турбулентный, и по скорости, и по направлению.

В таких условиях делать «глобальный» ветроэлектрогенератор (на 1-2 КВт или более) совершенно бессмысленно. Он не только себя никогда не окупит, но вообще будет плохо работать. Поскольку мощный генератор потребует больших лопастей, а они будут обладать большой инерцией и следовательно — «пропускать» порывы сильного ветра. Т.е. попросту не будут успевать раскручиваться. Порой такие порывы, несущие в себе основную мощность «среднего» ветрового потока длятся всего 15-30 секунд.

Кроме того, любой вращающийся предмет обладает значительным моментом инерции в плоскости вращения и представляет собой, по сути, гироскоп. Надеюсь, читатель помнит простой школьный опыт по демонстрации гироскопического эффекта с велосипедным колесом. Будучи раскрученным, оно легко удерживается буквально «двумя пальцами» за один из торчащих концов своей оси. И его чрезвычайно трудно повернуть в бок и заставить крутиться в другой плоскости. Примерно тоже самое будет происходить и с пропеллером ветряка при изменении направления ветра. И ось, и лопасти пропеллера будут испытывать чудовищные боковые знакопеременные нагрузки.

Эти обстоятельства фактически ставят жирный крест на надеждах обойтись одним большим ветряком. Работать он, конечно же будет. Но редко и бестолково. При слабых турбулентных ветрах он будет все равно выдавать мизерную мощность, а при сильных – вы не будете знать куда девать излишек. И уж конечно, следует забыть про его окупаемости. Он будет просто дорогой и красивой игрушкой, самым бестолковым вложением средств и труда, которое только можно представить.

Перспективными же конструкции ветряков – это небольшие маломощные ветрогенераторы, имеющие практически нулевую инерционность. Именно они способны взять от ветра практически всю энергию, которую он несет. Таких, что бы успевали быстро раскручиваться и отрабатывать смену галса. А для получения большой мощности потребуется устройство своеобразного ветропарка ветряных генераторов, расположенных на разновысоких мачтах (что бы не экранировать друг друга от ветра). Это же, кстати, значительно повысит буреустойчивость, решение проблем с мощными тяжелыми мачтами и растяжками (мачты будут держать друг друга), с надежностью «электростанции» — ведь все сразу генераторы сломаться не могут и плановый ремонт и обслуживание не приведут к полной остановке генерирующих мощностей.

Придя к таким неутешительным выводам, я решил переделать свой анемометр в рабочую модель ветрогенератора. Т.е. вместо бестолкового созерцания флюгера начать получать от него практическую пользу. Тем более, что генератор ветряка представляет собой шаговый двигатель с 200 «шагами» на оборот и довольно шустро генерит электричество даже на малых оборотах. Мощность генератора примерно Ватт 7-8

Прежде всего потребовалась замена лопастей на менее инерционные. Лопухи от вентилятора все же довольно тяжелы. Новые лопасти ветряка я сделал их из остатков дюралюминиевого отлива для пластиковых окон. Диаметр пропеллера — примерно сантиметров 50. Что сулит выход на максимальную мощность для генератора уже при ветре 4 м/с. Вырезал из толстой фанеры треугольник. Вклеил в него (эпоксидной смолой) втулку, внутренний диаметр которой совпадал в диаметром оси шагового моторчика. Тщательно разметив, сделал пропилы в фанерном «кокпите» и вклеил в прорези лопасти. Дополнительно зафиксировал их небольшими винтами. Пока эпоксидка не застыла, постарался максимально отбалансировать винт, что он не вибрировал при вращении. После застывания эпоксидной смолы еще раз проверил балансировку и довел ее до совершенства путем срезания тончайших полосок дюраля с краев лопастей.

Вообще говоря, маломерные ветрогенераторы обладают приятным свойством. Практически нет смысла заморачиваться сложнейшими расчетами КИЭВ, профилей лопасти и их изготовлением. Будут прекрасно работать и простейшие, плоские. А нужную мощность можно получить простым их удлинением (следовательно, увеличением площади ометания).

Все это чрезвычайно удешевляет ветрогенератор, появляется смысл его изготовления и использования. В частности, на свой я потратил примерно 3-4 часа времени (включая флюгер) и без учета времени полимеризации эпоксидной смолы. Затраты составили «ноль», так как делалось все «из мусора», т.е. подручных материалов.

Казалось бы, где можно использовать такой маломощный генератор? В перспективе, я собираюсь использовать его на… нагреве воды. Вернее, для компенсации теплопотерь воды, нагретой солнцем. Простейший расчет показывает абсолютную состоятельность моих надежд.

Допустим, есть некий бак – термос, литров на 50, куда вечером сливается нагретая до 50 градусов вода из солнечного коллектора. Размер бака примерно 40 х 40 х 40 см. Соответственно площадь поверхности будет равна 1 кв. метру. Бак окружен теплоизоляцией с К теплопроводности 0,15 Вт/м*град и толщиной 30 см. и теплопотери будут составлять примерно 0,5 Вт/град. Т.е. для того, что бы поддерживать разность температур в 20-25 градусов между горячей водой в баке-термосе и окружающим воздухом, достаточно генератора мощностью всего 10-15 Вт! Он будет компенсировать теплопотери и однажды нагретая вода уже никогда не остынет. А случись крепкий ветерок — так еще и подогреется.

Сейчас мой генератор крутится пока без нагрузки, проходит «ходовые испытания». Но в ближайшее время я его заставлю заряжать аккумуляторы в освещении дачного туалета и подсветки дорожки к нему. А то тащить сетевой провод туда и лень и затруднительно, а менять батарейки в китайском фонаре уже надоело.

Ветер - это бесплатная энергия! Так давайте же её использовать в личных целях. Если создание ВЭС в промышленных масштабах это очень дорого, потому что кроме генератора нужно провести ряд исследований и расчётов, государство не берет на себя такие расходы, а инвесторам в странах бывшего СССР - это, почему-то не вызывает особого интереса. То в частном порядке можно сделать мини-ветряк для собственных нужд. Стоит понимать, что проект перевода вашего дома на альтернативную энергию очень дорогое занятие.

Как уже было сказано: нужно произвести длительные наблюдения и расчёты, чтобы подобрать оптимальное соотношение размеров ветряного колеса и генератора, подходящее к вашему климату, розе ветров и среднегодовой скорости ветра.

Эффективность ветроэлектрической установки в пределах одного региона может отличаться в разы, это связано с тем, что движение ветра зависит не только от климатического пояса, но и от рельефа местности.

Однако вы можете узнать, что такое ветроэнергетика с минимальными затратами собрав бюджетную установку для питания маломощной нагрузки, типа смартфона, лампочек или радиоприёмника. При должном подходе вы можете обеспечить электроэнергией небольшой дом или дачный участок.

Давайте рассмотрим каким образом можно сделать простейшую ветроэлектрическую установку своими руками.

Маломощные ветряки из подручных средств

Компьютерный кулер представляет собой бесколлектроный двигатель, который в своем первоначальном виде не представляет практической ценности.

Его нужно перемотать, так как в оригинале обмотки соединены неподходящим образом. Мотать катушки поочередно:

    По часовой стрелке;

    Против часовой стрелки;

    По часовой стрелке;

    Против часовой стрелки.

Соединять соседние катушки нужно последовательно, а еще лучше мотать одним куском провода переходя от одного паза к другому. Толщину провода в этом случае подбирать произвольно, лучше будет если вы намотаете как можно больше витков, а это возможно при использовании наименее тонким проводом.

Выходное напряжение с такого генератора будет переменным, а его величина будет зависеть от оборотов (скорости ветра), установите диодный мост из диодов Шоттки, чтобы выпрямить его до постоянного, обычные диоды подойдут, но будет хуже, т.к. на них упадёт напряжение от 1 до 2-х вольт.

Лирическое отступление, немного теории

Запомните величина ЭДС равняется:

где L - длина проводника помещенного в магнитное поле; V - скорость вращения магнитного поля;

При модернизации генератора вы можете влиять только на длину проводника, то есть на количество витков каждой из катушек. Количество витков - определяет выходное напряжение, а толщина провода - максимальную токовую нагрузку.

На практике влиять на скорость ветра нельзя. Однако из этой ситуации тоже есть выход, можно, узнав типовую скорость ветра для вашей местности спроектировать подходящий по оборотам винт для ветроэлектрической установки, а также редуктор или ременную передачу, для обеспечения достаточных оборотов для генерации нужного по величине напряжения.

ВАЖНО: Быстрее не значит лучше!!! При слишком большой скорости вращения ветрогенератора сократиться его ресурс, ухудшаться смазочные свойства втулок или подшипников ротора, и он заклинит, а быстрее всего произойдет пробой изоляции обмоток в генераторе

Генератор состоит из:

Увеличиваем мощность генератора из компьютерного кулера

Во-первых, чем больше лопастей и диаметр колеса - тем лучше, поэтому присмотритесь к 120-мм кулерам.

Во-вторых, мы уже сказали, что напряжение зависит и от магнитного поля, дело в том, что промышленные генераторы высокой мощности имеют обмотки возбуждения, а низкой мощности - сильные магниты. В кулере магниты крайне слабые и не позволяют добиться хороших результатов от генератора, да и зазор между ротором и статором весьма велик - порядка 1 мм, и это при и без того слабых магнитах.

Решение этой проблемы кардинально изменить конструкцию генератора. Вернее, от кулера потребуется только крыльчатка, в качестве самого генератора применим моторчик от принтера или любой другой бытовой техники. Наиболее часто встречаются щеточные двигатели с возбуждением от постоянных магнитов.

В результате это будет выглядеть так.

Мощности подобного генератора хватит, чтобы запитать светодиоды, радиоприемник. Для подзарядки телефона его не хватит, телефон будет отображать процесс заряда, но ток будет крайне мал, до 100 Ампер, при ветре 5-10 метров в секунду.

Шаговые двигателя в роли ветрогенератора

Шаговый двигатель очень часто встречается в компьютерной и бытовой технике, в различных проигрывателях, флоппи-дисководах (интересны старые модели 5.25”), принтерах (особенно матричных), сканерах и т.д.

Данные двигатели без переделок могут работать в роли генератора, они представляют собой ротор с постоянными магнитами, и статор с обмотками, типовая схема подключения шагового двигателя в режиме генератора изображена на рисунке.

В схеме установлен линейный стабилизатор на 5 Вольт, типа L7805, что позволит без опасения подключать мобильные телефоны к такому ветряку для их зарядки.

На фото генератор из шагового двигателя с установленными лопастями.

Двигатель в конкретном случае с 4-мя выходными проводами, схема соответственно под него. Двигатель с такими габаритами в режиме генератора выдаёт примерно 2 Вт при слабом ветре (скорость ветра около 3 м/с) и 5 м/с при сильном (до 10 м/с).

Кстати вот аналогичная схема со стабилитроном, вместо L7805. Позволяет заряжать Li-ion батареи.

Доработка самодельного ветряка

Чтобы генератор работал эффективнее нужно сделать ему направляющий хвостовик и закрепить его на мачте подвижно. Тогда при изменении направления ветра - будет изменяться направление ветрогенератора. Тогда возникает следующая проблема - кабель, идущий от генератора к потребителю будет закручиваться вокруг мачты. Чтобы это решить нужно обеспечить подвижный контакт. На Ebay и Aliexpress продаётся готовое решение.

Нижних три провода - неподвижны идут вниз, а верхний пучок проводов - подвижен, внутри установлен скользящий контакт или щеточный механизм. Если у вас нет возможности купить, проявите смекалку, и, вдохновившись решением конструкторов автомобиля Жигули, а именно реализацией подвижного контакта кнопки сигнала на руле и сделайте что-то похожее. Или воспользуйтесь контактной площадкой от электрочайника.

Соединив разъёмы, вы получите подвижный контакт.

Мощный ветрогенератор из подручных средств.

Для получения большей мощности вы можете использовать два варианта:

1. Генератор из шуруповерта (10-50 Вт);

Из шуруповерта понадобиться только моторчик, вариант аналогичен предыдущему, в качестве винта вы можете использовать лопасти от вентилятора, это увеличит итоговую мощность вашей установки.

Вот пример реализации такого проекта:

Обратите внимание как здесь реализована шестеренчатая повышающая передача - вал ветрогенератора расположен в трубе, на его конце расположена шестерня, которая передаёт вращение меньшей шестерне закрепленной на валу двигателя. Повышение оборотов двигателя имеет место и в промышленных ветряных электроустановках. Редуктора применяются повсеместно.

Однако в условиях самоделки изготовить редуктор становиться большой проблемой. Вы можете извлечь редуктор из электроинструмента, он там нужен чтобы понизить высокие обороты на валу коллекторного двигателя в нормальные обороты патрона на дрели, или диска болгарки:

В дрели установлен планетарный редуктор;

    В болгарке установлен угловой редуктор (станет полезным для монтажа некоторых установок и уменьшит нагрузку с хвоста ВЭУ);

    Редуктор от ручной дрели.

Такой вариант самодельного ветрогенератора уже может заряжать 12 В аккумуляторы, однако нужен преобразователь для формирования зарядного тока и напряжения. Эту задачу можно упростить применив автомобильный генератор.

Преимущество такого генератора - возможность использовать его для зарядки автомобильных аккумуляторов, в принципе он для этого и предназначен. Автогенераторы имеют встроенное реле-регулятор напряжения, что избавляет от необходимости покупать дополнительные стабилизаторы или преобразователи.

Однако автолюбители знают, что на низких холостых оборотах, примерно 500-1000 Об/мин мощность такого генератора мала, и он не обеспечивает должного тока для заряда аккумулятора. Это приводит к необходимости подключения к ветроколесу через редуктор или ременную передачу.

Отрегулировать количество оборотов при нормальной для ваших широт скорости ветра можно с помощью подбора передаточного числа либо с помощью правильно спроектированного ветроколеса.

Полезные советы


Пожалуй, самая удобная для повторения конструкция мачты для ветряка - изображена на картинке. Такая мачта растягивается на тросах, закрепленных на держателях в земле, что обеспечивает устойчивость.

Важно: Высота мачты должна быть как можно большей примерно 10 метров. На большей высоте ветер сильнее, потому что для него нет препятствий в виде наземных сооружений, холмов и деревьев. Ни в коем случае не устанавливайте ветрогенератор на крыше своего дома. Резонансные колебания крепежных конструкций могут вызвать разрушение его стен.

Позаботьтесь о надёжности несущей мачты, ведь конструкция ветряка на базе такого генератора значительно утяжеляется и представляет собой уже довольно серьезное решение, которое может осуществлять автономное электроснабжение дачи с минимальным набором электрических приборов. Устройства, которые работают от 220 Вольт можно запитать от инвертора 12-220 В. Самый распространённый вариант такого инвертора - .

Лучше использовать генераторы от дизельных, в т.ч. грузовых автомобилей, ведь они рассчитаны для работы на низких оборотах. В среднем дизельный двигатель крупного грузовика работает в диапазоне оборотов от 300 до 3500 об/мин.

Современные генераторы выдают 12 или 24 Вольт, а ток в 100 Ампер - уже давно стал нормальным. Проведя несложные вычисления можно определить, что такой генератор максимально выдаст вам до 1 кВт мощности, а генератор от жигулей (12 В 40-60 А) 350-500 Вт, что уже довольно приличная цифра.

Каким должно быть ветроколесо для самодельной ВЭУ?

Я упомянул в тексте о том, что ветроколесо должно быть большим и с большим количеством лопастей, на самом деле это не так. Это утверждение было справедливо для тех микро-генераторов, которые не претендуют на звание серьезных электрических машин, а скорее экземпляры для ознакомления и досуга.

На самом деле проектирование, расчёт и создание ветроколеса - это очень сложная задача. Энергия ветра будет использоваться рациональнее, если оно выполнено очень точно и идеально выведен «авиационный» профиль, при этом он должен быть установлен с минимальным углом к плоскости вращения колеса.

Реальная мощность ветроколес с одинаковым диаметром и разным количеством лопастей - одинаково, разница лишь в скорости их вращения. Чем меньше крыльев - тем больше оборотов в минуту, при том же ветре и диаметре. Если вы собираетесь добиться максимальных оборотов вы должны максимально точно смонтировать крылья с минимальным углом к плоскости их вращения.

Ознакомьтесь с таблицей из книги 1956 года «Самодельная ветроэлектростанция» изд. ДОСААФ Москва. На ней показана связь диаметра колеса, мощности и оборотов.

В домашних условиях эти теоретические выкладки дают мало толку, любители делают ветроколеса из подручных средств, в ход идёт:

  • Листы металла;

    Пластиковые канализационные трубы.

Собрать своими руками быстроходное 2-4 лопастное ветроколесо можно из канализационных труб, кроме них нужна ножовка или любой другой режущий инструмент. Использование этих труб обусловлено их формой, после обрезки они имеют вогнутую форму, что обеспечивает высокую отзывчивость к потокам воздуха.

После обрезки их закрепляют с помощью БОЛТОВ на металлической, текстолитовой или фанерной болванке. Если вы собрались делать её из фанеры - лучше переклейте и скрутите саморезами с обеих сторон несколько слоев фанеры, тогда у вас получится добиться жесткости.

Вот идея двух лопастной цельной крыльчатки для генератора из шагового двигателя.

Выводы

Вы можете сделать ветроэлектрическую установку начиная от малых мощностей - единиц Ватт, для питания отдельных светодиодных светильников, маячков и мелкой техники, до хороших значений мощности в единицах киловатт, накапливать энергию в аккумуляторе, использовать её в исходном виде или преобразовывать до 220 Вольт. Стоимость такого проекта будет зависеть от ваших потребностей, пожалуй, самым дороги элементом является мачта и аккумуляторы, может оказаться в пределах 300-500 долларов.