Портал для автолюбителей

Что такое «пояса Ван Аллена».

Прошло уже 48 лет со дня объявленного первого полета астронавтов на Луну, но сомневающееся в их действительности человечество по-прежнему задает сотни вопросов, большей частью остающихся без ответа. Многих интересует как американцы исхитрились решить вопрос с радиационной защитой таким образом, что за полвека эта засекреченная технология так и не была нигде замечена. NASA по вопросу пояса Аллена долго думало, размышляло и решило, наконец, бросить косточку - все целых 11 полётов были осуществлены при "благоприятном зеленом свете", через установленные безопасные при движении коридоры:
Радиационный пояс же вроде не одинаков, и в разных местах имеет разный уровень радиации, верно? К тому же, если быстро проскочить, то большой дозы можно избежать. На мой дилетантский взгляд, конечно

Ещё совсем недавно, в 2014 году был выпущен другой ролик, где NASA ещё только решает проблемы с этой вредной радиацией.

Радиационный пояс Земли

Другое название (обычно в западной литературе) - «радиационный пояс Ван Аллена » (англ. Van Allen radiation belt ).

Внутри магнитосферы, как и в любом дипольном поле, есть области, недоступные для частиц с кинетической энергией E , меньше критической. Те же частицы с энергией E < Е кр , которые все-таки уже там находятся, не могут эти области покинуть. Эти запрещённые области магнитосферы называются зонами захвата. В зонах захвата дипольного (квазидипольного) поля Земли действительно удерживаются значительные потоки захваченных частиц (прежде всего, протонов и электронов).

Радиационный пояс Земли (внутренний) был предсказан советскими учёными С. Н. Верновым и А. Е. Чудаковым , а также американским учёным Джеймсом ван Алленом . Существование радиационного пояса было продемонстрировано измерениями на «Спутнике-2 » , запущенном в 1957 году, а также на «Эксплорере-1 », запущенном в 1958 году. Радиационный пояс в первом приближении представляет собой тороид , в котором выделяются две области:

  • внутренний радиационный пояс на высоте ≈ 4000 км, состоящий преимущественно из протонов с энергией в десятки МэВ ;
  • внешний радиационный пояс на высоте ≈ 17 000 км, состоящий преимущественно из электронов с энергией в десятки кэВ .

Высота нижней границы радиационного пояса меняется на одной и той же географической широте по долготам из-за наклона оси магнитного поля Земли к оси вращения Земли, а на одной и той же географической долготе она меняется по широтам из-за собственной формы радиационного пояса, обусловленной разной высотой силовых линий магнитного поля Земли. Например, над Атлантикой возрастание интенсивности излучения начинается на высоте 500 км, а над Индонезией на высоте 1300 км. Если те же графики построить в зависимости от магнитной индукции , то все измерения уложатся на одну кривую, что ещё раз подтверждает магнитную природу захвата частиц.

Между внутренним и внешним радиационными поясами имеется щель, расположенная в интервале от 2 до 3 радиусов Земли. Потоки частиц во внешнем поясе больше, чем во внутреннем. Различен и состав частиц: во внутреннем поясе протоны и электроны, во внешнем - электроны. Применение неэкранированных детекторов существенно расширило сведения о радиационных поясах. Были обнаружены электроны и протоны с энергией несколько десятков и сотен килоэлектронвольт соответственно. Эти частицы имеют существенно иное пространственное распределение (по сравнении с проникающими).

Максимум интенсивности протонов низких энергий расположен на расстоянии около 3 радиусов Земли от её центра. Малоэнергичные электроны заполняют всю область захвата. Для них нет разделения на внутренний и внешний пояса. Частицы с энергией десятки кэВ непривычно относить к космическим лучам , однако радиационные пояса представляют собой единое явление и должны изучаться в комплексе с частицами всех энергий.

Поток протонов во внутреннем поясе довольно устойчив во времени. Первые эксперименты показали, что электроны высокой энергии (E > 1-5 МэВ ) сосредоточены во внешнем поясе. Электроны с энергией меньше 1 МэВ заполняют почти всю магнитосферу. Внутренний пояс очень стабилен, тогда как внешний испытывает резкие колебания.

Радиационные пояса планет

Благодаря наличию сильного магнитного поля , планеты-гиганты (Юпитер , Сатурн , Уран и Нептун) также обладают сильными радиационными поясами, напоминающими внешний радиационный пояс

Начало космонавтики ознаменовалось рядом открытий, одним из которых было открытие радиационных поясов Земли. Внутренний радиационный пояс Земли был открыт американским учёным Джеймсом ван Алленом после полета Эксплорер-1. Внешний радиационный пояс Земли был открыт советскими учёными С. Н. Верновым и А. Е. Чудаковым после полёта Спутник-3 в 1958 году.

На некоторых высотах первые спутники попадали в области, которые были густо насыщенны заряженными частицами, обладающими очень большой энергией, резко отличными от наблюдавшихся ранее космических частиц, и первичных, и вторичных. После обработки данных со спутников стало ясно, что речь идет о заряженных частицах, захваченных магнитным полем Земли.

Известно, что любые заряженные частицы, попав в магнитное поле, начинают «навиваться» на силовые линии магнитного поля, одновременно передвигаясь вдоль них. Размеры витков получающейся спирали зависят от первоначальной скорости частиц, их массы, заряда и напряженности магнитного поля Земли в той области околоземного пространства, в которую они влетели и изменили направление движения.

Магнитное поле Земли неоднородно. У полюсов оно «сгущается» - уплотняется. Поэтому заряженная частица, начавшая движение по спирали вдоль «оседланной» ею магнитной линии из области, близкой к экватору, по мере приближения к какому-либо полюсу испытывает все большее и большее сопротивление, пока не остановится. А затем возвращается назад к экватору и дальше к противоположному полюсу, откуда начинает движение в обратном направлении. Частица оказывается как бы в гигантской «магнитной ловушке» планеты.

Эти области магнитосферы, где накапливаются и удерживаются проникшие в нее высокоэнергичные заряженные частицы (в основном протоны и электроны) и частицы с кинетической энергией E меньше критической называются радиационными поясами. Земля имеет три радиационных пояса, а сейчас открыли еще и четвертый. Радиационный пояс Земли представляет собой тороид.

Первый такой пояс начинается на высоте примерно 500 км над западным и 1500 км над восточным полушарием Земли. Самая большая концентрация частиц этого пояса - его ядро - находится на высоте двух-трех тысяч километров. Верхняя граница этого пояса достигает трех-четырех тысяч километров над поверхностью Земли.

Второй пояс простирается от 10-11 до 40-60 тыс. км с максимальной плотностью частиц на высоте 20 тыс. км.

Внешний пояс начинается на высоте 60-75 тыс. км.

Приведенные границы поясов определены пока еще только приблизительно и, видимо, в каких-то пределах периодически изменяются.

Отличаются эти пояса друг от друга тем, что первый из них, самый близкий к Земле, состоит из положительно заряженных протонов, обладающих очень большой энергией - порядка 100 Мое. Их смогла захватить и удержать только самая плотная часть магнитного поля Земли. Поток протонов в нем довольно устойчив во времени и не испытывает резких колебаний.

Второй пояс состоит, главным образом, из электронов с энергией «всего лишь» 30-100 кэв. В нем движутся большие потоки частиц, чем во внутреннем поясе, он испытывает резкие колебания.

В третьем поясе, где магнитное поле Земли самое слабое, удерживаются частицы с энергией 200 эв и более.

Кроме того, электроны с энергией меньше 1 МэВ заполняют почти всю область захвата. Для них нет разделения на пояса, они присутствуют во всех трех поясах.

Чтобы понять, насколько опасны для всего живого на Земле заряженные частицы в радиационных поясах, приведем для сравнения пример. Так, обычное рентгеновское излучение, применяемое кратковременно для медицинских целей, обладает энергией 30-50 кэв, а мощные установки для просвечивания огромных слитков и глыб металла - от 200 кэв до 2 Мэв. Поэтому самыми опасными для космонавтов будущего и для всего живого при полетах на другие планеты являются первый и второй пояс.

Вот почему ученые сейчас столь упорно и тщательно пытаются уточнить месторасположение и форму этих поясов, распределение частиц в них. Пока ясно лишь одно. Коридорами для выхода обитаемых космических кораблей на трассы к другим мирам будут области, близкие к магнитным полюсам Земли, свободные от частиц больших энергий.

Естествен вопрос: откуда взялись все эти частицы? Их в основном выбрасывает из своих недр наше Солнце. Сейчас уже установлено, что Земля, несмотря на огромное расстояние от Солнца, находится в самой внешней части его атмосферы. Это, в частности, подтверждается тем, что каждый раз, когда возрастает солнечная активность, а следовательно, увеличиваются количество и энергия испускаемых Солнцем частиц, возрастает и количество электронов во втором радиационном поясе, который как бы под напором «ветра» из этих частиц прижимается к Земле.

Разделение зарядов на слои и образование радиационных поясов Земли происходит под действием акусто-магнитоэлектрического эффекта, заключающегося в том, что коротковолновое излучение Солнца, проходя через плазму поперек силовых линий магнитного поля Земли, производит сортировку зарядов по энергетическому состоянию на разные уровни. Наличие определенного количества зарядов в каждом слое, в том числе и на поверхности Земли, дает основание предположить, что Землю вместе со всей атмосферой можно рассматривать как электрическую машину, которую по конструкции можно отождествить со сферической многослойной, многороторной, асинхронной электрической емкостно-индуктивной машиной.

Захваченные в магнитную ловушку Земли частицы под действием силы Лоренца совершают колебательное движение по спиральной траектории вдоль силовой линии магнитного поля из Северного полушария в Южное и обратно. Одновременно частицы совершают более медленное перемещение (долготный дрейф) вокруг Земли.

Когда частица движется по спирали в сторону увеличения магнитного поля (приближаясь к Земле), радиус спирали и её шаг уменьшаются. Вектор скорости частицы, оставаясь неизменным по величине, приближается к плоскости, перпендикулярной направлению поля. Наконец, в некоторой точке (её называют зеркальной) происходит «отражение» частицы. Она начинает двигаться в обратном направлении - к сопряжённой зеркальной точке в др. полушарии.

Одно колебание вдоль силовой линии из Северного полушария в Южное протон с энергией ~ 100 Мэв совершает за время ~ 0,3 сек. Время нахождения («жизни») такого протона в геомагнитной ловушке может достигать 100 лет (~ 3×109 сек), за это время он может совершить до 1010 колебаний. В среднем захваченные частицы большой энергии совершают до нескольких сотен миллионов колебаний из одного полушария в другое.

Долготный дрейф происходит со значительно меньшей скоростью. В зависимости от энергии частицы совершают полный оборот вокруг Земли за время от нескольких минут до суток. Положительные ионы дрейфуют в западном направлении, а электроны - в восточном. Движение частицы по спирали вокруг силовой линии магнитного поля можно представить как состоящее из вращения около т. н. мгновенного центра вращения и поступательного перемещения этого центра вдоль силовой линии.

Недавно американские физики раскрыли загадку поясов Ван Аллена — особых зон, в которых накапливаются и удерживаются проникшие в магнитосферу высокоэнергичные электроны и протоны. Выяснилось, что на самом деле они вовсе не защищают нашу планету от этих самых высокоэнергетических частиц, поскольку они становятся такими уже после попадания в пояса.


Бозон Хиггса: учёные нашли «частицу Бога»

Напомню, что радиационные пояса в магнитосфере нашей планеты были открыты в 50-х годах прошлого столетия. Американский ученый Джеймс ван Аллен, а также отечественные физики С.Н. Вернов и А.Е. Чудаков, проанализировав данные со спутников Эксплорер-1 и Спутник-3 пришли к выводу, что возле Земли существуют пояса, — в основном это протоны и электроны. Причем не один, а два — первый находится в среднем на высоте 4000 км над земной поверхностью и состоит преимущественно из протонов с энергией в десятки МэВ.

Второй же пояс расположен намного выше — где-то на высоте 17 000 км, и в нем присутствуют в основном электроны с энергией в десятки кэВ. Также известно, что между внутренним и внешним радиационными поясами имеется щель, расположенная в интервале от 2 до 3 радиусов Земли. Следует заметить, что потоки частиц во внешнем поясе более обильные, чем во внутреннем. В то же время никакой жесткой границы между поясами не существует — так, над Атлантикой нижний пояс может спускаться до высоты в 500 км, а над Индонезией — до 1300 км.

В англоязычной литературе эти пояса традиционно называются поясами Ван Аллена — в честь одного из первооткрывателей. Тем не менее, Джеймс ван Аллен, хоть и сумел обнаружить потоки высокоэнергетичных частиц в магнитосфере, однако все-таки не мог дать точный ответ на вопрос, каким образом они там появляются. Позже была сформулирована гипотеза о том, что во внешний пояс попадают высокоэнергетичные электроны из дальних уголков магнитосферы нашей планеты. Оказавшись в зоне захвата (области, недоступные для частиц с кинетической энергией, меньше критической, из которой попавшие туда электроны с данными характеристиками уже не могут выбраться) эти частицы ускоряются и образуют широко известные кольцеподобные структуры самого пояса.

Однако в последнее время накопились данные, которые несколько не соответствуют этому объяснению. В частности, если бы все было именно так, тогда бы многие параметры поясов Ван Аллена, например, плотность частиц, изменялись бы достаточно медленно, то есть на протяжении дней и недель. Однако это происходит куда быстрее — так, когда в 2012 году НАСА запустило пару зондов, специально предназначенных для изучения поясов, то выяснилось, что в прошлом октябре та самая плотность электронов во внешнем из них выросла в тысячу раз менее чем за 12 часов!

Проанализировав полученные результаты, группа физиков Джеффри Ривзом из Лос-Аламосской национальной лаборатории (США) пришла к выводу, что все происходит несколько по другому. На самом деле электрические поля внутри поясов отрывают электроны от блуждающих в космическом пространстве атомов и ускоряют их до околосветовых скоростей. Построенная ими модель показала, что подобные процессы могут изменить параметры поясов за время от пары секунд до нескольких часов, то есть достаточно быстро.

Интересно, что схожие версии уже высказывались учеными и раньше — так, спутниковые наблюдения 90-х показывали именно такую скорость изменения плотности электронов в верхнем из поясов Ван Аллена. Однако подобное фиксировалось лишь на небольших участках этого пояса, что заставило физиков усомниться в том, что данный процесс является общей закономерностью. В итоге решили, что приборы спутников имели дело с какой-то местной аномалией, причины которой так и не удалось установить. Однако теперь, поскольку резкое увеличение плотности было зафиксировано практически по всему поясу, стало понятно, что гипотеза захвата электронов у космических атомов абсолютно верна.

Более того, исследования доктора Ривза и его коллег показали, что электроны не приходят из космоса, уже обладая высокими энергиями, а получают их уже в поясах Ван Аллена, которые, как выяснилось, выполняют роль естественных ускорителей частиц, аналогичных тем, что стоят во многих земных физических институтах. Из этого же следует, что представление о том, будто бы радиационные пояса только защищают землю от потока космических частиц, совершенно неверно — ведь на практике большая часть электронов (и, скорее всего, протонов) становятся высокоэнергетическими уже после их захвата, то есть попадания в пояса Ван Аллена.

Исследования показали, что радиационные пояса в космосе начинаются у отметки 800 км над поверхностью Земли и простираются до 24 000 км. Поскольку уровень радиации там более или менее постоянен, входящая радиация должна приблизительно равняться исходящей. В противном случае, она либо накапливалась бы до тех пор, пока не «запекла» Землю, как в духовке, либо иссякла. По этому поводу Ван Аллен писал:

«Радиационные пояса можно сравнить с протекающим сосудом, который постоянно пополняется от Солнца и протекает в атмосферу. Большая порция солнечных частиц переполняет сосуд и выплескивается, особенно в полярных зонах, приводя к полярным сияниям, магнитным бурям и прочим подобным явлениям».

Радиация поясов Ван Аллена зависит от солнечного ветра. Кроме того, они, по-видимому, фокусируют, или концентрируют, в себе эту радиацию. Но поскольку концентрировать в себе они могут только то, что пришло напрямую от Солнца, то открытым остается еще один вопрос: сколько радиации в остальной части космоса?

У Луны нет поясов Ван Аллена. У нее также нет защитной атмосферы. Она открыта всем солнечным ветрам. Если бы во время лунной экспедиции произошла сильная солнечная вспышка, то колоссальный поток радиации испепелил бы и капсулы, и астронавтов на той части поверхности Луны, где они проводили свой день. Эта радиация не просто опасна - она смертельна!

В 1963 году советские ученые-космологи заявили известному британскому астроному Бернарду Ловеллу (Bernard Lovell), что они не знают способа защитить космонавтов от смертельного воздействия космической радиации (15, с. 173). Это означало, что даже намного более толстостенные металлические оболочки российских аппаратов не могли справиться с радиацией. Каким же образом тончайший, почти как фольга, металл, используемый в наших капсулах, мог защитить наших астронавтов? NASA знало, что это невозможно. Космические обезьяны погибли менее чем через 10 дней после возвращения, но NASA нам так и не сообщило об истинной причине их гибели.

Большинство людей, даже сведущих в космосе, и не подозревают о существовании пронизывающей его просторы смертельной радиации. Я полагаю, что своей неосведомленностью мы обязаны тем людям, которые травят космические байки.

В «Иллюстрированной энциклопедии космической технологии» словосочетание «космическая радиация» не встречается ни разу. Более того, ни одна из прочитанных мной за многие годы книг, кроме «Перспектив межзвездных путешествий» Билла Молдина (Bill Mauldin), опубликованной в 1992 году, и «Астронавигационной науки и техники», написанной ранними экспертами NASA, даже не упоминает об этом серьезном препятствии космическим полетам. Похоже, я снова узнаю тонкую работу моего правительства…

Русские определенно знали о радиации, потому что уже весной 1961 года их датчики были отправлены к обратной стороне Луны. По возвращении в Лондон Ловелл отправил имевшуюся у него информацию администратору NASA Хью Драйдену (Hugh Dryden). Драйден проигнорировал ее!

Коллинз в своей книге упоминал о космической радиации только дважды:

«По крайней мере, Луна была далеко за пределами земных поясов Ван Аллена, что предвещало хорошую дозу радиации для тех, кто побывал там, и смертельную - для тех, кто задержался» (7, с. 62).

Таким образом, радиационные пояса Ван Аллена, окружающие Землю, и возможность солнечных вспышек требуют понимания и подготовки, чтобы не подвергать экипаж повышенным дозам радиации (7, с. 101).

Так что же означает «понимание и подготовка»? Означает ли это, что за пределами поясов Ван Аллена остальной космос свободен от радиации? Или у NASA была секретная стратегия укрытия от солнечных вспышек после принятия окончательного решения об экспедиции?