Портал для автолюбителей

Шатунный вал. Кривошипно-шатунный механизм: назначение и устройство, обслуживание и ремонт

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм воспринимает давление газов при такте сгорание - расширение и преобразовывает прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Кривошипно-шатунный. Механизм состоит из блока цилиндров с картером, головки цилиндров, поршней с кольцами, поршневых пальцев, шатунов, коленчатого вала, маховика и поддона картера.

Рис. 2.12. Кривошипно-шатунный механизм двигателя СМД-14БН:

Венец маховика; 2 - пальцы ведущие; 3 - маховик; 4 - поршень; 5 - палец; 6 - кольцо стопорное; 7 - шатун; 8, 12 - соответственно верхний и нижний вкладыши шатуна; 9 - коленчатый вал; 10 - блок шестерен; 11 - крышка шатуна; 13 - винт.

кривошипный механизм коленчатый ремонт

Кривошипно-шатунный механизм состоит из следующих деталей: поршней с кольцами и пальцами, шатунов, коленчатого вала и маховика. Поршни размещены в цилиндрах, которые установлены в блок-картере, закрытым сверху головкой цилиндров.

Блок-картер является главной корпусной деталью двигателя, которую выполняют в виде общей отливки из чугуна. Верхнюю часть, где расположены все цилиндры, называют блоком цилиндров, а нижнюю уширенную часть, где расположен коленчатый вал, называют картером. Внутри картера имеются перегородки, которые придают ему жесткость, а также служат опорами для коленчатого вала. Нижние части перегородок, передняя и задняя пенки блок-картера имеют специальные приливы, которые совместно с крышками образуют постели для вкладышей коренных Подшипников коленчатого вала. Крышки коренных подшипников надежно закреплены в картере.

К передней обработанной стенке блок-картера прикреплен картер распределительных шестерен с крышкой, а к задней стенке - картер маховика. К нижней части блок-картера крепится при помощи болтов стальной штампованный поддон, служащий емкостью для масла.

В вертикальных цилиндрических расточках блок-картера установлены гильзы цилиндров, выполненные из высокопрочного чугуна. Пространство между стенками блока цилиндров и наружными стенками цилиндров заполняют охлаждающей жидкостью. Для исключения ее проникновения в картер гильзы в нижней части уплотнены резиновыми кольцами, которые размещены в специальных канавках.

Гильзы, омываемые охлаждающей жидкостью, называют мокрыми. Кроме резиновых колец герметичность посадки мокрых гильз в верхней части обеспечивается за счет плотной посадки специально обработанного буртика и пояска гильзы. Иногда под буртик гильзы устанавливают уплотнительное кольцо из мягкого металла.

Верхний торец гильзы несколько выступает над плоскостью блока цилиндров, что при затяжке головки цилиндров обеспечивает надежную фиксацию гильзы в гнезде и тщательное уплотнение стыка.

В верхней плите блока, кроме расточек для гильз цилиндров, выполнены:

специальные каналы для прохода охлаждающей жидкости из блока цилиндров в головку цилиндров;

канал для подвода масла к клапанному механизму;

отверстия для штанг толкателей;

отверстия с резьбой для шпилек крепления головки цилиндров к блоку цилиндров.

Цилиндры двигателя ЯМЗ-2Э8НБ расположены в два ряда под углом 90°, правый ряд смещен относительно левого на 35 мм. Каждый ряд цилиндров имеет отдельную головку.

Двигатель трактора ТДТ-55А имеет одну головку цилиндров, а двигатель трактора ТТ-4 - две. Сверху головки цилиндров закрыты колпаками из алюминиевого сплава. Головки цилиндров и блок - картера обоих двигателей имеют аналогичное устройство.

Стык головки цилиндров и блока цилиндров уплотняется специальной прокладкой, которая обеспечивает надежную герметичность соединения головки с блоком, препятствуя прорыву газов из цилиндров и протеканию охлаждающей жидкости из рубашки для охлаждающей жидкости. Внутренняя полость головки является рубашкой для охлаждающей жидкости, которая через отверстия, расположенные в нижней полости головки и на прокладке, сообщается с рубашкой для охлаждающей жидкости блока цилиндров.

В головке цилиндров имеются отверстия для установки форсунок для подачи топлива в камеру сгорания. Каждую форсунку дизельного двигателя трактора ТДТ-55А крепят двумя шпильками, а двигателей тракторов ТТ-4 и К-703 - специальным болтом с гайкой и скобой. Сверху на головке цилиндров расположены клапанный и декомпрессионный механизмы управления клапанами.

Головку цилиндров тракторных двигателей отливают из чугуна. В головке карбюраторных двигателей имеются отверстия для установки свечей зажигания. В головке пускового двигателя П-10УД имеется отверстие, перекрываемое крышкой, для продувки цилиндра при пуске или заливки в него топлива. Крепят головки цилиндров к блоку цилиндров шпильками и гайками, которые затягивают в определенной последовательности и с определенным моментом.

У всех рассматриваемых дизельных двигателей тракторов камера сгорания образуется соответствующими углублениями в поршне и верхними плоскостями головок цилиндров. Цилиндры вместе с камерами сгорания, поршнем и головкой цилиндров образуют объемы, в которых протекают все рабочие процессы рабочего цикла двигателя. Внутренние стенки гильз цилиндров, называемые зеркалом цилиндра, обеспечивают направление движения поршней.

Поршневая группа и шатун

Поршень с уплотнительными кольцами, пальцем и деталями крепления составляет поршневую группу. Поршень с уплотнительными кольцами обеспечивает герметичность переменного объема, в котором протекает рабочий процесс двигателя, а также воспринимает давление газов и передает возникающее усилие через палец и шатун коленчатому валу. При помощи поршня также осуществляется заполнение цилиндра горючей смесью или воздухом, сжатие ее и удаление из цилиндра отработавших газов. Кроме того, у двухтактных двигателей поршень открывает окна впускного, выпускного и перепускного каналов. Поршень работает в условиях больших давлений, высоких температур и быстро меняющихся скоростей движения.

Поршень состоит из верхней уплотняющей части (головки) и нижней направляющей части (юбки). Головка поршня имеет днище, воспринимающее давление газов, и боковую поверхность с проточенными на ней канавками для поршневых колец: на нижней части поршней дизельных двигателей протачивают канавки для размещения в них маслосъемных колец; на поршнях карбюраторных двигателей канавки для колец в нижней части не делают.

Для лучшего отвода теплоты и увеличения прочности поршня днище с внутренней стороны имеет ребра жесткости. Снаружи днище может быть плоским, вогнутым, выпуклым, фасонным.

В дизельных двигателях широко применяют фасонные днища, форма которых зависит от способа смесеобразования в дизеле, расположения клапанов и форсунок, а поверхность образует камеру сгорания. Поршни двигателей трелевочных тракторов имеют вогнутые фасонные камеры сгорания.

На уплотнительной части головки поршней дизелей тракторов ТДТ-55А, ТТ-4 и К-703 выполнены четыре кольцевые канавки: три верхние - для компрессионных колец и одна - для маслосъемного. На юбке поршня выполнена пятая канавка под нижнее маслосъемное кольцо. В канавках под маслосъемные кольца просверлены отверстия для отвода масла, снимаемого кольцами со стенок цилиндра, в поддон картера.

Боковая поверхность поршня имеет сложную конусовидно-эллиптическую форму, а диаметр его меньше диаметра цилиндра, причем у головки поршня диаметр меньше, чем у юбки, а большая ось эллипса перпендикулярна оси поршневого кольца. Все это позволяет при нагреве и расширении поршня обеспечивать между стенками цилиндра и поршнем зазор, который дает возможность поршню при нагревании свободно расширяться и перемещаться в цилиндре.

Юбка обеспечивает направление движения поршня в цилиндре и передает на его стенки боковые усилия. В верхней части юбка снабжена приливами-бобыщками, в которых выполнены отверстия для поршневого пальца, соединяющего поршень с шатуном. Ось пальца пересекается с осью поршня, но иногда она смещается от оси поршня. Это позволяет уменьшить нагрузку на поршень в момент перехода им ВМТ. Для улучшения приработки поршней к цилиндрам, уменьшения износа и предохранения их от задиров юбку поршня покрывают тонким слоем олова. Сам поршень отливается из специального алюминиевого сплава.

Поршневые кольца подразделяют на компрессионные и маслосъемные. Они предназначены для исключения прорыва газон между стенками цилиндра и поршня, попадания масла из картера в камеру сгорания, где, сгорая, масло образует нагар. Кольца участвуют в отводе тепла от поршня к цилиндру. В свободном состоянии наружный диаметр кольца больше диаметра цилиндра, поэтому после его установки кольцо плотно прилегает к стенкам цилиндра.

Для установки в канавки поршня кольца выполняют разрезными с зазором 0,2 - 0,5 мм. Разрезы поршневых колец называю замками, которые по форме бывают в основном прямыми, иногда косыми или ступенчатыми. На дизельных двигателях трелевочных тракторов применяют поршневые кольца с прямыми замками. При установке колец замки соседних колец смещают относительно друг друга по окружности приблизительно на угол 120°.

В процессе работы и износа у поршневых колец снижается упругость, и как следствие, ухудшается герметичность цилиндра. Для устранения этого в дизелях тракторов ТДТ-55А и ТТ-4 между поршневым маслосъемным кольцом и стенкой канавки поршня устанавливают стальное пружинящее кольцо - расширитель.

Поршневые кольца изготовляют из легированного чугуна отливкой с после дующей механической обработкой, а так же из стали. Высота колец меньше высоты канавки в поршне на 0,03 - 0,08 мм.

Материал для изготовления поршневых колец должен обладать хорошей упругостью и достаточной прочностью в условиях высоких температур, иметь высокую износоустойчивость, но не больше износоустойчивости зеркала цилиндра. Опорную поверхность одного или двух верхних компрессионных поршневых колец для уменьшения износа кольца и цилиндра покрывают слоем хрома толщиной до 0,16 - 0,20 мм с пористой поверхностью, хорошо удерживающей смазку. Для улучшения приработки рабочие поверхности нижних колец нередко покрывают слоем олова или другого легкоистираемого материала.

Поршневой палец служит для шарнирного соединения поршня с шатуном и изготовляется пустотелым из высококачественной износоустойчивой стали. Внутренняя его поверхность цилиндрическая или коническо-цилиндрическая.

Концы пальца размещают в отверстиях бобышек поршня, а середина проходит через отверстие в головке шатуна. Если пальцы свободно поворачиваются и в бобышках, и в головке шатуна, то они называются плавающими. Такое соединение имеет наибольшее распространение, поскольку при перемещении поршня с шатуном вся поверхность плавающего пальца является рабочей, что уменьшает износ и возможность заедания.

В некоторых двигателях палец может неподвижно закрепляться и головке шатуна и длина его меньше диаметра поршня. Для ограничения осевых перемещений пальца и исключения повреждений стенок цилиндра палец закрепляют стопорными кольцами, устанавливаемыми в канавки бобышек торцевыми заглушками, вставляемыми в бобышки и стопорным кольцом, размещенным в проточках пальца и верхней головки шатуна.

Смазку поршневого пальца осуществляют через сверления в стержне или прорези в верхней головке шатуна и масляные каналы в бобышках поршня.

Шатун состоит из верхней и нижней головки и соединяющего их стержня:

верхняя головка неразъемная и служит для установки поршневого пальца, шарнирно соединяющего поршень с шатуном. Для уменьшения трения и износа в нее запрессовывают одну или две бронзовые втулки;

нижняя головка у многих двигателей выполняется составной с прямым (90°) или косым (30 - 60°) относительно оси стержня шатуна разъемом. Плоскость разъема может быть гладкой или иметь шлицевой замок. Косой разъем облегчает пропуск поршня с шатуном через цилиндр, а также соединение шатуна с кривошипом коленчатого вала.

Съемная часть нижней головки шатуна - крышка. Она крепится к стержню двумя болтами, которые имеют гайки или ввертываются в тело шатуна и надежно стопорятся после затяжки.

В нижней головке шатуна установлены стальные тонкостенные вкладыши (верхний и нижний), с тонким слоем 0,1 - 0,9 мм анфрикционного сплава. Вкладыши шатунных подшипников в дизельных двигателях тракторов ТДТ-55А и ТТ-4 изготовляют из малоуглеродистой стали, покрытой специальными алюминиевыми сплавами, а в двигателях трактора К-703 - свинцовистой бронзой. Вкладыши выполняют функцию подшипника скольжения и удерживаются в шатуне и в крышке плотной посадкой и наличием у них усиков, входящих в соответствующие выточки в шатуне и крышке.

Стержень шатуна имеет обычно двутавровое сечение, расширяющееся к нижней головке, обтекаемую форму и плавные переходы к головкам. У некоторых шатунов в стержне выполняют канал для подвода под давлением масла к поршневому пальцу.

При работе двигателя на шатун действуют силы давления газов и силы инерции, которые сжимают, растягивают и изгибают шатун в продольном и поперечном направлениях. Поэтому его форма, конструкция и материал должны обеспечивать прочность, жесткость и легкость. Шатуны изготовляют из высококачественных углеродистых и легированных сталей штамповкой нагретых заготовок с последующей механической и термической обработкой.

Для обеспечения хорошей уравновешенности двигателя различие в массе отдельных шатунов и комплектов шатунно-поршневой группы должно быть минимальным. Для правильной сборки поршня с шатуном и установки их в двигатель на нижней головке шатуна и ее крышке выбивают порядковый номер цилиндра, для которого предназначен шатун, а также другие метки.

Коленчатый вал и маховик

Коленчатый вал воспринимает усилия, передаваемые от поршней шатунами, и преобразует их в крутящий момент, передавая его приводным системам и механизмам двигателя и трансмиссии трактора. В процессе работы коленчатый вал находится в очень сложном напряженном состоянии: на него действуют сжимающие и растягивающие усилия, инерционные и центробежные силы, скручивающие и изгибающие моменты. Коленчатый вал должен быть: прочным, жестким, износоустойчивым, статически и динамически уравновешенным, обтекаемым, не подвергаться резонансным и крутильным колебаниям, иметь небольшую массу.

Коленчатый вал состоит из коренных и шатунных шеек, соединенных щеками, фланца для крепления маховика и носка.

Шатунные шейки вала дизелей тракторов ТДТ-55А, ТТ-4 и К-703 имеют полости, закрытые резьбовыми пробками, в которых осуществляется дополнительная центробежная очистка масла перед поступлением в шатунные подшипники.

Коренные шейки служат для установки коленчатого вала в подшипниках, размещенных в картере двигателя. При помощи шатунных шеек вал соединяется с нижними головками шатунов. Шатунные и коренные шейки соединяют при помощи щек. Для разгрузки коренных подшипников от инерционных сил движущихся деталей шатунно-поршневой группы на щеках вала установлены противовесы, в сборе с которыми вал балансируется. Противовесы могут изготовляться заодно со щеками или в виде отдельных, надежно закрепленных деталей. Шатунная шейка вместе с прилегающими к ней щеками образует колено вала или кривошип.

Для избежания разрушения коленчатых валов в местах перехода щек к коренным и шатунным шейкам выполняют закругления - галтели. В коренных и шатунных шейках и в щеках просверлены каналы для подачи под давлением масла к шатунным подшипникам.

На передней части коленчатого вала крепятся: шестерня привода распределительного вала, шкив приводных ремней, маслоотражатель, сальник и храповик для проворачивания вала рукояткой. К хвостовику коленчатого вала болтами крепится маховик. На хвостовике вала имеется маслосъемная резьба и маслоотражательный буртик, а в торце имеется гнездо для установки переднего подшипника вала муфты сцепления.

Носик и хвостовик вала уплотняются резиновыми самоподжимными манжетами. Коленчатый вал вращается в коренных подшипниках, имеющих вкладыши из сталеалюминевой ленты.

Изготовляют коленчатые валы из углеродистых и легированных сталей штамповкой или литьем с последующей механической и термической обработкой. Для повышения износоустойчивости коренных и шатунных шеек их подвергают поверхностной закалке, а затем шлифуют и полируют.

Форма коленчатого вала зависит от числа и расположения цилиндров, тактности и порядка работы двигателя. Она должна обеспечивать равномерное чередование рабочих ходов в цилиндрах по углу поворота коленчатого вала, принятую последовательность работы цилиндров и уравновешенность двигателя.

Число шатунных шеек на коленчатом валу двигателя с однорядным расположением цилиндров равно числу цилиндров. У двигателей с V-образным расположением цилиндров число шатунных шеек равно половине числа цилиндров: у этих двигателей на каждой шейке рядом установлены головки двух шатунов. Число коренных шеек коленчатого вала у v-образных двигателей обычно на одну больше, чем у шатунных. Например, восьмицилиндровый дизельный двигатель ЯМЗ-2Э8НБ имеет пять коренных шеек, а коленчатый вал шестицилиндрового дизеля А-01МЛ - семь коренных шеек. Чем больше опор в виде коренных шеек имеет коленчатый вал, тем более жесткой и надежной получается конструкция двигателя, облегчается нагрузка на опорные подшипники, но при этом усложняется устройство вала и картера, увеличивается длина двигателя, возрастает стоимость изготовления и ремонта.

Вкладыши коренных подшипников устанавливают в постели блок-картера и крышки коренных подшипников, а фиксацию осуществляют таким же способом, как и шатунных.

При рабочем ходе в одноцилиндровом двигателе коленчатый вал с маховиком воспринимает усилие от поршня через шатун и раскручивается, накапливая энергию, которая затем, прежде всего, используется на выполнение остальных подготовительных тактов рабочего процесса. По мере увеличения в двигателе числа цилиндров и частоты рабочих тактов (у двухтактных двигателях) сокращается потребность в энергии маховика для выполнения подготовительных тактов. Поэтому размеры маховика и его масса у таких двигателей меньше.

При пуске двигателя маховик, получив энергию после рабочего хода в одном из цилиндров, обеспечивает за счет инерции вращение коленчатого вала, при этом в остальных цилиндрах создаются условия для протекания рабочих ходов, в результате чего двигатель начинает работать.

Маховик отливают из чугуна в виде диска. Для увеличения момента инерции маховика основную массу его металла располагают по ободу, т.е. на максимальном расстоянии от оси вращения маховика. На обод маховика напрессовывают стальной зубчатый венец, с которым при пуске двигателя входит в зацепление шестерня пускового устройства, и наносят метки для определения положения поршня в первом цилиндре и установки момента зажигания или момента подачи топлива.

В сборе с коленчатым валом маховик балансируется. Это выполняют для того, чтобы при их вращении не возникало вибрации и биения от центробежных сил и не происходил усиленный износ коренных подшипников двигателя. На заднем торце маховика монтируют сцепления.

При работе двигателя на коленчатый вал действуют осевые усилия от работы косозубых шестерен привода газораспределения, включения муфты сцепления и нагрева вала. Чтобы ограничить осевые перемещения коленчатого вала, один из коренных подшипников (задний, передний или средний) выполняют упорным. Для этого вкладыши таких подшипников снабжаются отбортовкой, упорными кольцами или полукольцами. От осевых перемещений коленчатый вал дизельных двигателей тракторов ТДТ-55А, ТТ-4 и К-703 фиксируется четырьмя полукольцами, которые устанавливаются в выточках среднего (СМД-14БН) или заднего коренного подшипника.

Техническое обслуживание кривошипно-шатунного механизма

Детали кривошипно-шатунного механизма во время работы сильно нагреваются и воспринимают переменные нагрузки большой величины, поэтому для обеспечения длительной работы двигателя в исправном состоянии необходимо выполнять следующие рекомендации:

новый или отремонтированный двигатель необходимо подвергать обкатке;

пуск двигателя при температуре окружающей среды ниже -5°С следует производить при помощи предпускового подогревателя или только после предварительного прогрева водой;

не давать двигателю полной нагрузки, пока он не прогреется;

не перегружать двигатель длительное время и не допускать во время работы ненормальных стуков и дымления;

поддерживать температуру охлаждающей жидкости в пределах 82 - 85°С;

не допускать длительной работы на холостом ходу.

Основными внешними признаками неисправности кривошипно-шатунного механизма являются: повышенный расход масла, дымный выхлоп отработавших газов и ненормальные стуки. Все это происходит в результате износа деталей и увеличения зазоров в сопряжениях, что вызывает падение давления масла в магистрали. Прежде чем проверять зазор в подшипниках, следует убедиться в правильности показаний манометра, проверить загрязненность фильтров и состояние других элементов системы смазки. Предварительная оценка состояния подшипников коленчатого вала по давлению масла в масляной магистрали производится приспособлением КИ-4940: номинальное давление прогретого двигателя до нормального теплового состояния при номинальной частоте вращения должно быть 250 - 350 кПа (2,5 - 3,5 кгс/см2), а предельно допустимое 100 кПа (1,0 кгс/см2). Падение давления масла в магистрали ниже предельно допустимого является одной из причин износа шеек коленчатого вала и подшипников. Допустимый зазор в шатунных и коренных подшипниках коленчатого вала должен быть 0,3 мм.

Зазоры в подшипниках можно проверить следующим способом. После слива масла и снятия поддона необходимо ослабить гайки крепления крышек коренных и шатунных подшипников, и снять крышку проверяемого подшипника вместе с нижним вкладышем. Затем положить на него вдоль оси коленчатого вала прокладку из латуни размером 25x13x0,3 мм, т.е. толщиной, равной максимально допустимому зазору, поставить крышку на место и затянуть гайки. Затяжку производят при помощи динамометрического ключа. Гайки шатунных болтов следует стопорить новыми шплинтами. Момент затяжки гаек коренных подшипников составляет 200 - 220 Н м (20 - 22 кгс-м), а шатунных 150 - 180 Н м (15 - 18 кгс-м).

Затем проверяют возможность вращения коленчатого вала, предварительно включив декомпрессионный механизм. Если вал будет вращаться свободно, то зазор в подшипнике превышает допустимое значение.

Увеличение зазора между деталями цилиндро-поршневой группы приводит к падению мощности двигателя, повышенному угару масла и выделению газов из сапуна. Чтобы оценить состояние цилиндропоршневой группы, можно воспользоваться различными способами, но наиболее простыми являются такие, которые позволяют определить техническое состояние деталей без разборки двигателя. К этим способам относятся: определение компрессии в цилиндрах двигателя при помощи компрессиметра КИ-861 или технического состояния цилиндропоршневой группы по утечке газов в картер двигателя при помощи индикатора расхода газов КИ-4887-1.

Окончательное решение о техническом состоянии цилиндропоршневой группы можно принять только после частичной разборки двигателя с замером зазоров между отдельными сопряженными деталями. Например, предельные зазоры между основными деталями цилиндропоршневой группы, по которым оценивают техническое состояние двигателя А-ОЗМЛ, равны:

зазор между юбкой поршня и гильзой цилиндра в верхнем рабочем пояске - 0,60 мм;

зазор между остальными кольцами - 0,40 мм; зазор в стыке компрессионного кольца - 6,00 мм; зазор в стыке маслосъемного кольца - 3,00 мм; зазор между бобышками поршня и пальцем - 0,10 мм; зазор между верхней головкой шатуна и пальцем - 0,30 мм; выступание гильзы цилиндра относительно плоскости блока - 0,165 мм.

Для установки поршневых пальцев поршни перед сборкой нагревают в масле до температуры 80 - 100°С. Поршневые кольца подбирают по гильзе, а затем по канавкам в поршне. Для проверки зазора в замке кольца его устанавливают в гильзу при помощи Поршня на глубину 25 мм от верхнего торца. Подгонка зазора в замке осуществляется при помощи личного напильника, а под гонка кольца по канавкам в поршне по высоте осуществляется притиркой на чугунной плите.

Гильзы цилиндров меняют на новые, если их износ в верхней зоне первого компрессионного кольца превышает 0,60 мм. Поршни заменяют, если зазор между канавкой и новым компрессионным кольцом по высоте превышает 0,50 мм. Затяжку гаек на шпильках при креплении головки цилиндров двигателя производят в определенной последовательности, момент составляет 200 - 220 Н м (20 - 22 кгс-м)

Кривошипно-шатунный механизм (КШМ) предназначен для преобразования поступательного движения поршней во вращательное движение коленчатого вала (КВ). Основными движущимися деталями КШМ являются: поршни с кольцами, поршневые пальцы, шатуны, шатунные и коренные подшипники, маховик.
Поршневая группа деталей дизелей Д-65 и Д-240 сконструирована одинаково.

Рис. 1. Поршень с шатуном (Д-65):
1 — шатунный болт; 2 — крышка головки шатуна; 3 — шатун; 4 — стопорное кольцо; 5 — поршневой палец; 6 — поршень; 7 — маслосъемные кольца; 8 — компрессионные кольца; 9 — верхнее компрессионное кольцо; 10 — втулка верхней головки шатуна; 11 — верхний вкладыш шатуна; 12-нижний вкладыш шатуна; 13 — контровочная пластина

Поршни 6 (рис. 1) изготовлены из алюминиевого сплава с тремя канавками под компрессионные 8, 9 и двумя под маслосъемные 7 кольца. В днище поршня выполнена камера сгорания. В канавках под маслосъемные кольца и ниже этих канавок просверлены отверстия для отвода масла внутрь поршня. По наружному диаметру юбки (в плоскости, перпендикулярной к плоскости поршневого пальца) поршни подразделяются на три размерные группы (табл. 1). Клеймо группы наносится на днище.

В комплект на двигатель поршни, шатуны и поршневые пальцы подбирают одинаковой размерной группы. Отклонение в массе поршней и шатунов в комплекте не должно превышать 15 г. По диаметру отверстия под поршневой палец поршни делят на две размерные группы (табл. 2), их маркируют краской на бабышках. Поршневые пальцы 5 полые, стальные. От осевого перемещения они удерживаются разжимными стопорными кольцами 4. установленными в канавки поршня. По наружному диаметру пальцы разделены на две группы (см. табл. 2). Маркировочная краска нанесена на внутренней поверхности пальца.

Поршневые кольца изготовлены из специального чугуна. Верхнее компрессионное кольцо 9 прямоугольного сечения для уменьшения износа хромировано (по наружной поверхности). Второе и третье 8 кольца для улучшения компрессионных качеств имеют на внутренней поверхности торсионные выточки, которые при установке колец должны быть обращены вверх — к днищу поршня. В две нижней канавки поршня установлены маслосъемные 7 кольца скребкового типа (по два в каждую канавку). Верхним в канавке устанавливается кольцо с дренажными окнами на торце, а нижний — без окон; выточки наружной поверхности маслосъемных колец должны быть обращены вниз (к юбке поршня).

Замки поршневых колец располагают на ровном расстоянии по окружности. Нормальный зазор в замке новою кольца, установленного в новую гильзу 0,3…0,7 мм. Поршневые кольца заменяют, если зазор превышает 4 мм, а поршни меняют, если зазор между новым кольцом и канавкой в поршне по высоте превышает 0.4 мм. У дизеля Д-245 несколько иное расположение колец (рис. 2): под верхнее компрессионное кольцо трапецеидальной формы залито чугунную вставку 2, маслосъемное кольцо одно — как и у Д-240 — коробчатого типа.


Рис. 2. Схемы расположения колец на поршнях дизелей Д-245 (а) и Д240 (б):
а) 1 — поршень; 2 — чугунная вставка типа «нирезист»; 3 — верхнее компрессионное кольцо; 4, 5 — компрессионные кольца; 6 — маслосъемное кольцо;
б) 1 — поршень; 2 — верхнее компрессионное кольцо; 3, 4 — компрессионные кольца; 5 — маслосъемное кольцо

Шатуны 3 (см. рис. 1) стальные, штампованные. В верхнюю головку запрессована биметаллическая втулка 10 (стальная со слоем бронзы). Для смазки поршневого пальца в верхней головке шатуна и втулки есть отверстие. По внутреннему диаметру втулки сортируются на две размерные группы: с большим диаметром маркируются черной краской, с меньшими — желтой.

Нижняя головка шатуна разъемная. Разъем выполнен косым для обеспечения прохода нижней части через гильзу при монтаже. Крышка 2 прикреплена к шатуну двумя болтами из высококачественной стали, застопоренными контровочной пластиной 3.


Рис. 3. Детали кривошипно-шатунного и газораспределительного механизмов (Д-65):
1 — заглушка; 2 — шестерня распределительного вала; 3 — упорное кольцо; 4 — упорный фланец распределительного вала; 5 — толкатели; 6 — впускной клапан; 7 — направляющая втулка клапана; 8 — рукоятка декомпрессионного механизма; 9 — валики декомпрессионного механизма; 10-регулировочный винт: 11 — выпускной клапан; 12 — штанги толкателя; 13-поршень; 14-распределительный вал; 15 — втулка; 16 — палец маховика, 17 — шарикоподшипники; 18 — болт; 19 — маховик; 20 — венец; 21 — шатун; 22, 23 — вкладыши коренных подшипников; 24 — шестерня; 25 — маслоотражатель; 26 — коленчатый вал; 27 — шкив; 28 — головка цилиндров; 29 — пружина клапана; 30 — сухарик; 31 — регулировочный винт декомпрессионного механизма; 32 — коромысло клапана.

Коленчатый вал 26 (рис. 3) полноопорный, стальной (имеет пять коренных и четыре шатунных шейки, рабочие поверхности которых закалены токами высокой частоты. В шатунных шейках имеются полости для центробежной очистки масла при вращении вала. Полости закрыты резьбовыми заглушками 1, которые у двигателя должны быть одной группы (номер группы выбит на торце заглушки), чтобы не нарушилась балансировка вала. На первой, четвертой, пятой и восьмой щеках вала дизелей Д-240 и Д-245 закреплены съемные противовесы. Их наличие обусловлено большой частотой вращения коленчатого вала этих дизелей (2200 мин1), вследствие чего центробежные силы сильно возрастают. Установка противовесов значительно уменьшает нагрузки на подшипники. В коренных и шатунных шейках выполнены сверления, по которым подается масло к подшипникам (вкладышам).

На переднем конце вала смонтированы шестерня 24 привода распределения и насоса системы смазки, шкив 27 привода насоса системы охлаждения и генератора, маслоотражатель 25; на заднем — маслоотражатель и маховик 19 с напрессованным на нем зубчатым стальным венцом 20.

Коленчатые валы изготовлены с шейками двух номинальных размеров: для дизелей Д-65 диаметры коренных и шатунных шеек в первом номинале соответственно равны 85,25 мм и 75,25 мм, во втором — 85,0 мм и 75,0 мм; для дизелей Д-240 в первом — 75,25 мм и 68,25 мм, во втором — 75,0 мм и 68,0 мм. Валы с шейками второго стандартного размера имеют на первой щеке обозначение: 2КШ — все шейки вала второго номинала; 2К — коренные второго, а шатунные первого; 2Ш — шатунные второго, а коренные первого.

Вкладыши коренных 23 и шатунных 22 подшипников изготовлены из сталеалюмнневой ленты. От перемещений и проворачивания вкладыши стопорятся выштампованными на них усиками, входящими во фрезеровки в постелях вкладышей в блоке и шатуне. На наружной поверхности вкладыша проставляется товарный знак завода и размер, а на внутренней поверхности усика (выступа) — клеймо (« + » или « — ») группы вкладыша по высоте (вкладыши комплектуют так, чтобы один из них имел на усике знак « + » а другой « — » или оба без маркировки). Отверстия в верхних половинках коренных вкладышей совпадают с маслоподводящими каналами в блоке.

Зазор в подшипниках нового или отремонтированного двигателя в пределах 0,065…0,123 мм для шатунных и 0,070…0,134 мм для коренных. При увеличении зазора в шатунных подшипниках до 0,25 мм и овальности шейки более 0,06 мм или в коренных — соответственно до 0,3 и более 0,1 мм шейки вала шлифуют на соответствующий ремонтный размер.

Осевое перемещение вала ограничивается упорами пятой коренной шейки (допустимое в эксплуатации — 0,5 мм), осевое перемещение нижней головки шатуна допускаемое 0,7 мм. Коленчатый вал и маховик дизеля Д-240 изображены на рис. 4.


Рис. 4. Коленчатый вал с маховиком (Д-240):
1 — коренная шейка; 2 и 12 — щеки; 3 — упорные кольца; 4 — нижний вкладыш коренного подшипника; 5 — маховик; 6 — маслоотражательная шайба; 7 — установочный штифт; 8 — болт; 9 — зубчатый венец; 10 — верхний вкладыш коренного подшипника; 11 — шатунная шейка; 13 — галтель; 14 — противовесы; 15 — болт крепления противовеса; 16 — замковая шайба; 17 — шестерня коленчатого вала; 18 — шестерня привода масляного насоса; 19 — упорная шайба; 20 — болт; 21 — шкив; 22 — канал подвода масла в полость шатунной шейки; 23 — пробка; 24 — полость в шатунной шейке; 25 — трубка для масла.
[Тракторы «Беларус» семейств МТЗ и ЮМЗ. Устройство, работа, техническое обслуживание. Я.Е. Белоконь, А.И. Окоча, Г.В. Шкаровский; Под ред. Я.Е. Белоконя. 2003 г.]

Статьи о КШМ двигателей тракторов: ; ; ; ;

При контролируемом сгорании топлива в ДВС автомобиля поршням придается возвратно поступательное движение. Для преобразования его в крутящий момент служит узел КШМ – кривошипно-шатунный механизм, шарнирно закрепленный к поршням и коленвалу . Основных неисправностей немного, но для устранения требуется полная разборка двигателя.

Конструкция КШМ

В отличие от прочих агрегатов автомобиля конструкция механизма кривошипно-шатунного условно включает в себя часть поршневой группы и коленчатый вал. Состоит КШМ из подвижных деталей и неподвижных элементов. Одну или несколько степеней свободы имеют:

  • шатун и поршень;
  • кольца компрессионные, стопорные и маслосъемные;
  • палец поршневой и кольцо стопорное;
  • вкладыши, болт крепежный и крышка шатуна;
  • маховик и коленвал;
  • противовес и шейки шатунные, коренные;
  • вкладыши.

К неподвижным элементам относятся головка и блок цилиндров.

В зависимости от конструкции ДВС и количества цилиндров кинематика кривошипно шатунного механизма несколько видоизменяется:

  • в рядном двигателе плоскость коленвала и цилиндров полностью совпадает;
  • в VR-образном моторе происходит смещение на угол 15 градусов;
  • в W-образном приводе величина смещения достигает 72 градусов.

Другими словами, в рядном двигателе рабочий цикл осуществляется поочередно 4-мя цилиндрами, что позволяет равномерно распределить нагрузки на коленвал. Для достижения компактных размеров ДВС модификации с большим количеством цилиндров размещаются V-образно. Что так же позволяет смягчить нагрузки на коленвал за счет гашения части энергии.

Чертеж КШМ в разрезе

Чтобы характеристика кривошипно шатунного механизма была стабильной в момент перегрузок (высокая температура, большое давление и обороты, трудности с подачей смазки), вместо шариковых/роликовых подшипников применяются элементы скольжения с шатунными и коренными вкладышами. Неравномерность угловых скоростей вала в отдельных циклах сглаживается массивным маховиком за счет инертности этой детали.

Принцип действия и назначение

В отличие от электродвигателя принцип действия КШМ в двигателях внутреннего сгорания значительно сложнее:

  • поршни поочередно выталкиваются из цилиндров при воспламенении топливной смеси;
  • внутри них шарнирно закреплены шатунные детали сложной конфигурации;
  • коленчатый вал имеет ответную посадочную поверхность П-образного типа для нижней головки шатуна, что обеспечивает смещение от оси вращения вала;
  • за счет фиксированного расстояния между поршнем и коленвалом шатун описывает амплитуду в виде восьмерки, за счет чего и преобразуется поступательное движение с цилиндров в крутящий момент на валу.

Основное назначение расходных элементов КШМ (вкладыши, втулки, кольца) заключается в увеличении эксплуатационного ресурса этого узла. Поскольку число цилиндров достигает 16 штук в современных авто, устройство и работа механизма КШ должна быть идеально сбалансирована.

Поломки и проблемы кривошипно-шатунного механизма

Практически все детали КШМ являются парами трения, что наглядно подтверждает схема кинематики привода автомобиля. Если диагностика данного механизма привода внутреннего сгорания выявила неисправности, необходим капитальный ремонт двигателя, так как производится его полная разборка.

Технические особенности неисправностей КШМ заключаются в износе деталей трения. Основными поломками являются:

  • залегшие кольца на поршнях – из-за высокой выработки металла появляется люфт, возникает перекос и поршень заклинивается внутри цилиндра;
  • износ пальцев поршневых – вместо фиксированного размера между коленвалом/поршнем расстояние получается плавающим, изменяются характеристики крутящего момента;
  • выработка поршневой группы – стачивается зеркало цилиндра или поверхность поршня, меняются характеристики ДВС;
  • износ подшипников – шатунные или коренные вкладыши сточились, возникают ударные нагрузки на вал.

Основными причинами неисправностей становятся длительные нагрузки, отсутствие ТО, низкое качество смазки или выработка ресурса привода.

Залегание колец поршневых

Указанные неисправности кривошипно шатунного механизма диагностируются по признакам:

  • перебои в работе мотора;
  • постоянное уменьшение в картере уровня смазки;
  • отработанные газы принимают синий оттенок.

Поломка не может устраняться в домашних условиях, так как необходима высокая квалификация мастера и полная разборка двигателя.

Износ поршней и пальцев

Эти конкретные неисправности кривошипно шатунного механизма выявляются по следующим признакам:

  • пальцы – независимо от режима работы мотора в верхней части блока цилиндров слышен звонкий стук, пропадающий при выкручивании свечи, увеличивающийся при наборе оборотов валом;
  • поршни – выхлоп синего цвета, аналогичный предыдущему случаю стук, но только на холостых оборотах, после прогрева обычно исчезает.

После диагностики этой неисправности в обязательном порядке требуется капремонт ДВС.

Износ подшипника шатунного и коренного

Неизбежно потребуется ремонт кривошипно шатунного механизма при выработке ресурса подшипников, о котором свидетельствуют следующие факторы:

  • подшипник шатуна – сигнальная лампа извещает о недостаточном давлении смазки, стук глухой, плавающий, идет из средней части блока цилиндров;
  • подшипник коренной – сигнальная лампа горит, свидетельствуя о низком давлении масла, в нижней части блока цилиндров возникает глухой стук.

По аналогии с предыдущими вариантами без капремонта обойтись не получится.

Способы диагностики КШМ

Вышеуказанные методики выявления причин не являются высокоточными. Служат поводом для поездки на СТО, где может быть произведено квалифицированное диагностирование кривошипно комбинированного механизма мастерами, обладающими необходимым опытом и практикой работ. Они имеют чертеж кинематики с точными размерами, допусками и посадками. Обладают необходимым для этого оборудованием.

Предварительная на определение стуков

Поскольку ремонт кривошипно шатунного механизма относится к дорогостоящим операциям капремонта двигателя, на начальном этапе мастер СТО позиционирует стуки и шумы внутри блока цилиндров. Для этого используется стетоскоп (обычно модификация КИ-1154 производителя Экранас). Технология исследований выглядит следующим образом:

  • рабочая поверхность стетоскопа прислоняется к стенкам БЦ на разных уровнях (в рабочей зоне подшипников шатунных и кривошипных);
  • двигатель прогревается до температуры ОЖ 75 – 80 градусов;
  • обороты увеличиваются вначале плавно, затем режим работ изменяется резко;
  • стуки прослушиваются лишь при возникновении зазора больше 0,1 – 0,2 мм.

Характер стука заметен исключительно профессионалу:

  • поршни о цилиндр издают звуки щелкающие, на холодном двигателе;
  • звонкий звук металл о металл при резком увеличении оборотов издает поршневой палец, реже при неправильно выставленном (опережение) угле зажигания;
  • коренные подшипники звучат в низкой тональности;
  • звук подшипников шатунных немного резче.

Внимание: Данная методика диагностики так же не является окончательной. Позволяет мастеру выявить наличие имеющихся дефектов с гарантией, что разбирать ДВС все же необходимо для замены расходных элементов.

Измерение суммарных зазоров в сопряжениях

Обычно техническое обслуживание кривошипно шатунного механизма осуществляется с помощью установки КИ-11140 для определения зазора в КШМ.

При этом не нужно снимать поддон картера и запускать мотор. Измеряются зазоры в головках шатуна суммарно:

  • поршень диагностируемого цилиндра позиционируется в верхней «мертвой точке»;
  • коленвал стопорится, устройство фиксируется на месте форсунки;
  • шток упирается с натягом в дно поршня, зажимается винтом;
  • установка компрессора подсоединяется к штуцеру, создается вакуум -0,06 МПа и давление такой же величины;
  • после 2 – 3 циклов подачи указанного давления и вакуума стабилизируются показания индикатора;
  • затем индикатор настраивается на отметку «0» в надпоршневом пространстве при давлении;
  • после чего, в него подается отрицательное давление.

Суммарные зазоры измеряют минимум три раза, выводят среднее значение, сравнивают с допустимой нормой эксплуатации из таблиц.

Определение объема газа, прорывающегося в картер

Не пригодна к эксплуатации существующая сборка кривошипно шатунного механизма авто, если проверка прорывающихся газов выявила большее его количество в картере. Измерения производятся прибором КИ-4887-И следующим способом:

  • газорасходомер подключается в полость картера и к глушителю или вакуумной установке;
  • двигатель включается в режим «под нагрузкой»;
  • прорывающиеся газы изменяют показания прибора на величину их объема, проходящего в единицу времени.

При значительном износе ДВС расход может превышать 120 л/мин, требуются дополнительные регулировки расходомера. После отсоединения системы вентилирования картера все дополнительные отверстия необходимо закрыть заглушками/пробками.

Измерение давления масла

Эксплуатируемая сборка кривошипно шатунного механизма считается пригодной к использованию, если проверка давления масла удовлетворяет норме. Измерения проводятся прибором КИ-5472, состоящим из рукава и манометра:

  • штатный манометр скручивается с маслофильтра;
  • на его место крепится прибор;
  • двигатель прогревается до 70 – 80 градусов;
  • фиксируется значение магистрального давления при оборотах холостого хода.

Предельно простое общее устройство системы смазки и прибора КИ позволяет снизить время диагностики.

Для ДВС карбюраторного типа считается нормальной компрессия в пределах 0,7 МПа. Поэтому в некоторых случаях диагност СТО измеряет компрессию прогретого двигателя. При этом разница показаний цилиндров не может превышать 0,1 МПа.

Технология ремонта

Основное назначение капремонта КШМ – восстановление ресурса поршневой группы и коленчатого вала. Для этого реставрируются посадочные места, заменяются пальцы, вкладыши.

Поршни и пальцы

Поршень, условно входящий в кривошипно шатунный механизм двигателя авто, изготавливается из алюминиевых сплавов. Палец создан из легированной стали, изнашивается меньше.

У поршней восстанавливается зеркало, геометрия канавок для колец и бобышек, внутри которых находится палец. Размеры поршневого пальца подбираются при температуре воздуха в мастерской 20 градусов в зависимости от размерной группы поршня.

Ремонт шатунов

В основном изготавливают шатуны из стали 40Г, 40Х или ст45, характерными дефектами считаются:

  • выработка металла посадочных мест;
  • износ отверстий;
  • изменение геометрии (скручивание и изгиб).

Выбраковывают кинематический элемент механизма при аварийном изгибе, поломке и раскрытии трещин. В остальных случаях изгибы и скручивание устраняют при нагреве до 500 градусов для снятия внутренних напряжений. Посадочные поверхности фрезеруются, затем шлифуются до следующего ремразмера.

После чего, работа кривошипно шатунного механизма вновь удовлетворяет требованиям регламента ГОСТ. Запрещено удалять слой металла больше 0,2 – 0,4 мм для дизелей, карбюраторных ДВС, соответственно. В противном случае нарушается кинематическая схема узла.

Реставрация коленвала

Основными нюансами ремонта коленчатого вала являются:

  • деталь изготавливается из магниевого чугуна высокопрочного, сталей ДР-У, 50Т, 40Х или ст45;
  • основными дефектами становятся изгиб и выработка стали посадочных мест;
  • реже изнашиваются шпоночные канавки, повреждаются резьбы, раскрываются трещины;
  • ремонтопригодной считается сборка кривошипно шатунного механизма с выработкой посадочных поверхностей и поврежденными резьбами;
  • трещины более 3 мм приводят к отбраковке коленвала.

После промывки масляных каналов и наружных поверхностей изделие исследуется дефектоскопом. Выработку восстанавливают наплавлением Св-18ХГСА проволоки с проточкой под ремонтные параметры. Шпоночные канавки фрезеруют с заданной чистотой обработки. При этом должна соблюдаться схема установки шестеренок.

После шлифовки коленвал балансируют на динамической установке БМ-У4 либо КИ-4274.

Таким образом, кривошипно шатунный механизм КШМ проще и дешевле поддерживать в работоспособном состоянии. Для этого нужно своевременно проходить ТО и обращаться в сервис к специалистам при малейшем постороннем звуке в блоке цилиндров. В этом случае, даже капремонт обойдется дешевле.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Поршень (рис. 4) воспринимает давление газов и передает его через поршневой палец и шатун на коленчатый вал. В двухтактных двигателях наряду с этим поршень выполняет роль золотника механизма газораспределения.

Поршни работают в весьма тяжелых условиях: они испытывают воздействие горячих газов и воспринимают большие динамические нагрузки. Например, в начале рабочего хода на днище поршня диаметром 100 мм действует сила 20…40 кН у карбюраторного двигателя и 6…100 кН – у дизельного. Поршень движется в цилиндре с высокой (до 2 м/с) переменной скоростью, вследствие чего в шатунно-поршневых комплектах возникают значительные (до 15…20 кН) знакопеременные силы инерции (с частотой изменения знака до 200 Гц).

Рисунок. 4. Поршень двигателя ЗИЛ-130: а – общий вид; б – поршневые кольца; в – размещение колец в поршне: 1– ребро поршня; 2 – канавки для поршневых колец; 3 – бобышки; 4 – днище поршня; 5 – головка поршня; 6 – юбка поршня; 7 – компрессионные кольца; 8 – нижнее коническое компрессионное кольцо; 9, 10, 11, 12 – маслосъемные кольца с расширителями; 13 – чугунная всатвка

Применение поршней из алюминиевых сплавов дает возможность снизить конструкционную массу и, следовательно, силы инерции на 20…30% по сравнению с чугунными. Наряду с этим поршни из алюминиевого сплава имеют и недостатки: меньшую механическую прочность, повышенный износ, больший коэффициент линейного расширения (в 2…2,5 раза).

Поскольку поршень непосредственно охлаждаться не может, он нагревается значительно сильнее, чем охлаждаемая гильза. Чтобы предотвратить заклинивание поршня в гильзе, необходимо иметь между ними определенный зазор, когда они находятся в холодном состоянии. Этот зазор уменьшается при прогреве двигателя.

В настоящее время с целью уменьшения коэффициента линейного расширения и повышения прочности применяют поршни, изготовленные из высококремнистого алюминиевого сплава (содержание кремния до 22%, как например, у семейства двигателей ЯМЗ).

Для предотвращения заклинивания поршня его устанавливают в цилиндр с зазором. Поскольку днище и головка поршня нагреваются интенсивнее, чем юбка, зазор между цилиндром и головкой делают большим.

Конструкция и размеры поршня определяются главным образом величиной и скоростью нарастания давления газов и быстроходностью двигателя. Поршни дизелей имеют более массивную и жесткую конструкцию, большее число поршневых колец.

На долговечность поршня и бесшумность его работы большое влияние оказывает размещение оси поршневого пальца. С целью обеспечения одинаковых условий работы поршня при различных направлениях его движения ось поршневого пальца несколько смещают вниз и располагают на высоте 0,64…0,68 рабочей высоты юбки. Чтобы избежать стуков при переходе через мертвые точки, ось поршневого пальца смещают на 1,4…1,6 мм от оси поршня в сторону действия боковой силы при рабочем ходе (противоположную направлению вращения).

Поршневой палец служит для шарнирного соединения поршня с шатуном. Для уменьшения массы и снижения сил инерции его делают пустотелым. Поршневой палец работает под воздействием ударных нагрузок, переменных по величине и направлению, подвергается изгибу и истиранию. Чтобы противостоять этим нагрузкам, поршневой палец должен иметь мягкую сердцевину и, твердую поверхность. Этим требованиям удовлетворяют поршневые пальцы, изготовленные из углеродистой или малолегированной стали. Их подвергают термической обработке – цементации на глубину 0,5…1,0 мм, с последующей поверхностной закалкой токами высокой частоты на глубину 1,0…1,5 мм. Наружную поверхность пальца шлифуют и полируют.

Подавляющее распространение на современных двигателях получили плавающие поршневые пальцы, которые могут проворачиваться как в верхней головке шатуна, так и в бобышках поршня. Такая конструкция обеспечивает более равномерный износ сопряжения. Осевая фиксация поршневого пальца осуществляется стопорными пружинными кольцами, устанавливаемыми в бобышках поршня.

Поршневые компрессионные кольца служат для герметизации надпоршневого пространства и предотвращают прорыв газов в картер двигателя. Поршневое кольцо представляет собой криволинейный брус, имеющий в свободном состоянии вырез. При установке в цилиндр кольцо сжимается и благодаря своей упругости прижимается наружной поверхностью к зеркалу цилиндра. Уплотняющее действие поршневых колец тем лучше, чем больше их число. В карбюраторных двигателях устанавливают на поршне 2 - 3 компрессионных кольца, в дизельных – 3 - 4.

Поршневые кольца современных быстроходных двигателей работают в чрезвычайно тяжелых условиях, под воздействием высоких давлений и температур, сил инерции и трения. В наиболее тяжелых условиях работает верхнее компрессионное кольцо.

Самым распространенным материалом для изготовления поршневых компрессионных колец является легированный чугун. Чугунные поршневые кольца получают из индивидуально отлитых заготовок. Однако качество литых чугунных колец не полностью удовлетворяет современным требованиям.

В настоящее время часто применяют стальные кольца. Более перспективными являются кольца из металлокерамических материалов, обладающие большей износостойкостью. Такие кольца получают прессованием порошкообразной смеси железа, меди и графита под большим давлением и при высокой температуре.

В процессе работы двигателя компрессионные кольца попеременно прижимаются к верхней и нижней кромкам канавок поршня и действуют как насос, стремясь перекачивать масло со стенок цилиндра в камеру сгорания. Поэтому на поршнях устанавливают, кроме компрессионных, маслосъемные кольца . Они снимают масло со стенок цилиндра, направляя его обратно в картер двигателя. Длительное время маслосъемные кольца изготовлялись из чугуна. В настоящее время широкое распространение получили стальные составные маслосъемные кольца. Обладая гибкостью, относительной подвижностью элементов и высоким давлением на стенки цилиндра, стальное кольцо хорошо приспосабливается к поверхности цилиндра, имеющего искаженную форму (вследствие износа) и обеспечивает хорошее распределение масла по поверхности цилиндра как в новом, так и в изношенном двигателе. Переход с чугунных маслосъемных колец на стальные позволил уменьшить расход смазочного масла в 2 раза, а пробег двигателя до замены колец увеличить до 150000 км.

Шатун обеспечивает шарнирную связь прямолинейно движущегося поршня с вращающимся коленчатым валом. Он передает от поршня коленчатому валу силу давления газов при рабочем ходе. Шатун совершает сложное плоскопараллельное движение: возвратно-поступательное вдоль оси цилиндра и качательное относительно оси поршневого пальца. Шатун испытывает значительные знакопеременные нагрузки, действующие по его продольной оси. Во время рабочего хода сила давления газов сжимает шатун. Силы инерции стремятся оторвать поршень от коленчатого вала и растягивают шатун. Наряду с этим качательное движение вызывает знакопеременные силы инерции, изгибающие шатун в плоскости его качания.

Указанные условия работы предъявляют к конструкции шатуна следующие требования: высокая жесткость; достаточная усталостная прочность; небольшая масса; простота и технологичность. Габаритные размеры нижней головки шатуна не должны препятствовать его проходу через цилиндр при сборке двигателя.

Основными элементами шатуна являются верхняя (неразъемная) и нижняя (разъемная) головки и соединяющий их стержень. Наилучшей формой поперечного сечения стержня шатуна, обеспечивающей ему высокую жесткость при минимальной массе, является двутавр.

В верхнюю головку шатуна устанавливаются бронзовые втулки, обладающие высокой износостойкостью и сопротивляемостью усталостным разрушениям.

В нижнюю головку шатуна устанавливаются тонкостенные шатунные вкладыши, которые выполняются подобно вкладышам коренных подшипников, с тем же материалом антифрикционного слоя.

Шатуны для карбюраторных двигателей изготовляют из углеродистой или легированной стали. В дизельных двигателях шатуны работают при больших динамических нагрузках, поэтому для их изготовления требуются высоколегированная сталь и увеличенные сечения элементов (утяжеление конструкции).

Коленчатый вал (рис. 5) воспринимает усилия от шатунов и преобразует их в крутящийся момент. Коленчатый вал является наиболее напряженной деталью КШМ. Он подвергается растяжению, сжатию, изгибу, скручиванию, срезу, поверхностному трению, продольным и поперечным деформациям. При этом нагрузки носят динамический характер и достигают значительных величин.

При большой длине вала эти нагрузки могут вызвать заметные продольные и угловые деформации и привести к усталостным разрушениям.

Исходя из условий работы, характера и величены нагрузок, коленчатый вал должен удовлетворять следующим требованиям: обладать статической и динамической уравновешенностью; быть достаточно жестким и долговечным при небольшой массе; иметь высокую усталостную прочность; быть устойчивым против вибрации и крутильных колебаний; иметь точные размеры и высокую износостойкость трущихся поверхностей (коренных и шатунных шеек).

Коленчатые валы изготовляют ковкой или штамповкой из углеродистой или низколегированной стали. В последние годы получают распространение литые валы из магниевого чугуна. Они имеют меньшую массу и дешевле, чем кованые.

Валы подвергают термической обработке – закалке и отпуску. Шейки коленчатого вала закаливают токами высокой частоты на глубину 3…4 мм, шлифуют и полируют.

Рисунок 5. Подвижные детали кривошипно-шатунного механизма: 1 – храповик; 2 – фиксаторные шайбы; 3, 13 – шатунные шейки; 4 – вкладыши шатунных шеек; 5 – пружинное кольцо; 6 – поршневой палец; 7 – верхняя головка шатуна; 8 – стержень шатуна; 9 – болты; 10 – нижняя головка шатуна; 11 – крышка шатуна; 12, 19, 24, 29 – коренные шейки коленчатого вала;

14, 26 – вкладыши коренных шеек; 15, 16 – поршни; 17, 28 – противовесы; 18 – маховик; 20 – задняя часть вала; 21 – стопорное кольцо; 22, 27, 30 – крышки; 23 – масляная полость; 31 – шестерня привода ГРМ; 32 – передняя часть вала; 33 – шкив ременной передачи

Коленчатый вал имеет коренные и шатунные шейки, соединенные друг с другом при помощи щек. Коренные шейки выполняются одинаковыми по диаметру. Шатунная шейка со смежными щеками составляет колено, кривошип вала. Все шатунные шейки по длине и диаметру одинаковы.

В автотракторных двигателях коленчатые валы могут вращаться в подшипниках качения и скольжения. Подшипники качения обеспечивают уменьшение потерь на трение, что обеспечивает значительное облегчение запуска двигателя в холодное время. Однако в многоцилиндровых двигателях конструкция блока цилиндров и коленчатого вала с подшипниками качения значительно усложняется. Имеются и другие недостатки. Поэтому чаще всего используются подшипники скольжения. Коренные подшипники скольжения выполняют в виде тонкостенных стальных вкладышей (полуколец), которые устанавливают в расточках блока цилиндров. На внутреннюю поверхность вкладыша наносится слой из антифрикционного сплава, состав и свойства которого зависят от степени нагруженности.

В карбюраторных двигателях длительное время использовались свинцовооловянистые сплавы (баббиты). Широкое распространение получил сплав СОС–6–6 на свинцовой основе, содержащей 6% олова, 6% сурьмы, 0,5% меди. Однако свинцовооловянистые сплавы чувствительны к повышению температуры и, имеют недостаточную сопротивляемость уста-лостным выкрашиваниям.

В связи с этим в настоящее время получили широкое применение сталеалюминиевые вкладыши, обладающие высокой усталостной прочностью и хорошими противокоррозийными качествами. Сталеалюминиевые вкладыши широко применяются на современных V-образных карбюраторных двигателях и обеспечивают им достаточно высокий межремонтный срок службы.

В дизельных двигателях, имеющих повышенную нагрузку на подшипники, применяются стальные вкладыши с антифрикционным сплавом из свинцовистой бронзы, содержащей 30% свинца, улучшающего противозадирные свойства. Подшипники из свинцовистой бронзы выдерживают без усталостных разрушений почти вдвое большую нагрузку, чем баббиты и стабильно работают при нагреве до 140…150°С, в то время как для баббитов предельно допустимой является температура 120°С.

Вместе с тем антифрикционный сплав из свинцовистой бронзы плохо поглащает твердые абразивные частицы, недостаточно хорошо прирабатывается, имеет склонность к коррозии. Поэтому в двигателях с подшипниками из свинцовистой бронзы можно применять только специальное масло с противокоррозийной присадкой.

Маховик устанавливают на задний конец коленчатого вала для уменьшения неравномерности работы двигателя и выведения поршней из мертвых точек.

В многоцилиндровых двигателях рабочие ходы протекают с частичным перекрытием, что обеспечивает хорошую равномерность и позволяет кривошипному механизму проходить мертвые точки без помощи маховика. В этих случаях маховик обеспечивает плавную работу двигателя на малой частоте вращения, облегчает трогание машины и способствует пуску двигателя.

Маховик отливают из серого чугуна и крепят к фланцу коленчатого вала. На обод маховика напрессовывают стальной зубчатый венец, служащий для пуска двигателя от стартера.

На торцевой поверхности маховика наносят метки, соответствующие ВМТ и моменту зажигания. Этими метками пользуются при установке зажигания или впрыска, а также при проведении различных регулировок. В сборе с коленчатым валом маховик должен быть динамически сбалансирован.

При работе двигателя на детали КШМ действуют давление газов на поршень, силы инерции масс, движущихся возвратно-поступательно (поршень и часть массы шатуна) и вращающихся (колено вала и часть массы шатуна), силы веса. По мере вращения вала эти силы, за исключением силы веса, меняют величину и направление.

Одной из составляющих частей двигателя является кривошипно-шатунный механизм (сокращенно – КШМ). О нем и пойдет речь в нашей статье.

Основное предназначение КШМ в изменении прямолинейных движений поршня на вращательные действия коленвала в моторе, а также наоборот.

Схема кривошипно-шатунного механизма(КШМ): 1 – Вкладыш шатунного подшипник; 2 – Втулка верхней головки шатуна; 3 – Поршневые кольца; 4 – поршень; 5 – Поршневой палец; 6 — Стопорное кольцо; 7 – Шатун; 8 – Коленчатый вал; 9 – Крышка шатунного подшипника

Строение КШМ

Эта деталь КШМ представлена в виде цилиндра, сделанного из алюминия и некоторых примесей. Составляющими частями поршня есть: юбка, головка, днище, соединенные в единую деталь, но имеющие разные функции. В днище поршня, которое может иметь разную форму, находится камера сгорания. Продолговатые углубления головки предназначены для колец. Кольца компрессионные защищают механизм от прорывов газа. В свою очередь кольца маслосъемные обеспечивают удаление лишнего количества масла из цилиндра. Юбка содержит две бобышки, которые способствуют расположению поршневого пальца, служащего связующим звеном между поршнем и шатуном.

По своей сути поршень – это деталь, которая трансформирует колебания давления газа в механический процесс и способствует обратному действию – нагнетает давление путем обратно-поступательной деятельности.

Основное предназначение шатуна – перемещение усилия, полученного от поршня на коленвал. В строении шатуна существует верхняя и нижняя головка, соединение деталей осуществляются с помощью шарниров. Составляющей частью детали является еще двутавровый стержень. Благодаря разбирающейся нижней головке создается крепкое и точное крепление с шейкой коленвала. Что касается верхней головки, то в ней расположен вращающийся поршневой палец.

Главная роль коленвала – обработка усилия, поступающего от шатуна для трансформирования его в крутящий момент. Коленвал составляют несколько коренных, шатунных шеек, обитающих в подшипниках. В шейках и щеках есть специальные отверстия, использующиеся в виде маслопроводов.

Маховик размещен на конце коленвала. Механизм представлен в виде 2-х объединенных дисковых пластин. Зубчатая сторона детали задействована напрямую в запуске мотора.

Предназначение цилиндра КШМ – направление работы поршней. В блоке цилиндров сосредоточены точки крепления агрегатов, рубашки охлаждения, подушки для подшипников. В голове блока цилиндров размещена камера сгорания, втулки, посадочные места для свечей, седла клапана, каналы для впуска и выпуска. Сверху блок цилиндров защищает специальная герметичная прокладка. Вместе с этим головка цилиндра прикрыта резиновой прокладкой, а также штампованной крышкой.