Портал для автолюбителей

Пропорциональный коэффициент. Что такое пид-регулятор

Поскольку количество сочетаний трех параметров, предусмотренных для настройки регуляторов, весьма значительно, с течением времени было разработано много методик, облегчающих их правильную настройку. Некоторые из них требуют определенной дестабилизации технологического процесса, что зачастую неприемлемо на практике. Цель данной статьи – предложить ряд простых правил настройки регуляторов, позволяющих выполнять данную работу с минимальными отклонениями от режимных параметров.
Основное правило: регулятор следует настраивать сообразно технологическому процессу. При высоком быстродействии процесса (например, в контуре расхода), регулятор также следует настроить на быстрое срабатывание. Скорость срабатывания регулятора определяется интегральным временем (интегральной составляющей), а не зоной пропорционального регулирования (усилением). Неправильное использование этих параметров значительно снижает эффективность настройки регуляторов. При низком быстродействии процесса (например, при регулировании температуры на тарелке в верхней части ректификационной колонны) регулятор следует настроить на медленное срабатывание СООБРАЗНО ПРОЦЕССУ. Если у Вас отсутствует информация о характеристиках процесса и не к кому обратиться за разъяснениями, Вам следует перепоручить настройку регуляторов специалисту, который сможет получить необходимую информацию.

Общие правила для стандартных контуров управления

Расход

Обычно более половины контуров управления на установке представляют собой контуры регулирования расхода. Установите интегральную составляющую (I) на 0,1 минуты. Отрегулируйте зону пропорционального регулирования так, чтобы предотвратить излишнюю зашумленность результатов измерения (как правило, около 300%, хотя, в некоторых случаях, при неправильном монтаже узла расходомера, требуемое значение может достигать 1000%). Установка зоны пропорционального регулирования для контура, в котором используется позиционер клапана, в два – три раза превышает значение для контура без позиционера. Для медленно срабатывающих или заедающих регулирующих клапанов может потребоваться установка 0,2 или 0,3 минуты, однако, обычно, такие значения являются исключением. Если эти настройки не работают, проверьте монтаж клапана и первичного измерительного элемента с целью определения неисправности. Устраните неисправность. Не следует устанавливать регулятор на неприемлемое значение интегральной составляющей, например, 10 минут. Если вы считаете, что требуемое значение интегральной составляющей равно 10 минут, следует использовать регулятор в ручном режиме или клапан с ручным приводом.
Примечание: Регуляторы не будут нормально работать, если клапан или другой конечный регулирующий элемент почти полностью закрыт или почти полностью открыт. Настраивать регуляторы в этих условиях не следует. Попросите оператора открыть или закрыть байпас (при наличии байпаса) или дождитесь, пока технологические параметры не изменяться настолько, чтобы клапан вернулся в пределы рабочего диапазона. Предельные значения рабочего диапазона составляют от 5 до 95% рабочего хода, при этом более безопасный диапазон – от 10 до 90%. Не следует использовать воздействие дифференциальной составляющей для контуров регулирования расхода.

Уровень

Следующий за контуром расхода наиболее распространенный контур управления – контур уровня. не следует использовать малые значения интегральной составляющей в контуре регулировки уровня. При использовании подобного значения контур будет безостановочно работать в цикличном режиме, нередко с периодом (временем от пика одного цикла до пика следующего цикла) от 10 до 15 минут. Этот период обратно пропорционален интегральному времени. Установите интегральное время на 10 минут. Эта установка будет приемлемой для 80 — 90% регуляторов уровня. Если временная постоянная аппарата (объем/расход) составляет от 1 до 2 минут, то можно использовать более короткое интегральное время, однако следует помнить о том, что более продолжительное время является более надежным. При большом объеме аппарата и малом расходе следует использовать более продолжительное интегральное время.
Если важна точность регулирования уровня, используйте наименьшее значение зоны пропорционального регулирования (10 — 50%), при котором отсутствует циклическое срабатывание. Если плавное изменение расхода на последующую установку важнее жесткого регулирования уровня, используйте более широкую зону пропорционального регулирования (100 — 200%). Не следует использовать воздействие дифференциальной составляющей в контуре регулирования уровня. Впрочем, имеются немногочисленные исключения. В очень редких случаях небольшая дифференциальная составляющая используется для компенсации на регулирующих клапанах уровня со значительным гистерезисом. Шумы по уровню вызывают дрожание клапана, что может способствовать более плавному регулированию. Более оптимальное решение – установить позиционер или, что еще лучше, регулятор расхода в каскаде с регулятором уровня.
В контурах уровня, если регулятор управляет клапаном без позиционера, зачастую наблюдается предельный цикл. График предельного цикла имеет пилообразную форму, иногда с плоскими нижними и/или верхними участками. Контроль выходного сигнала в ходе предельного цикла показывает изменение, равное примерно 5%. Устранить подобный предельный цикл путем настройки практически невозможно. Настройка приводит к изменению периодичности цикла, но не влияет на его амплитуду. Если регулирование клапана осуществляется в пределах рабочего диапазона, то устранить данную проблему можно только путем установки позиционера или каскадированием уровня с расходом.
Если уровень контролируется по расходу продукта, направляемого в парк хранения, то, как правило, циклическое срабатывание не имеет значения. Если же речь идет об орошении в ректификационной колонне, зацикливание, как правило, недопустимо. Следует отметить, что циклическое управление клапаном в почти полностью закрытом или почти полностью открытом положении приводит к возникновению предельного цикла, как правило, с плоским нижним участком, если клапан почти закрыт или с плоским верхним участком, если клапан почти полностью открыт.

Давление жидкости

Настройка осуществляется аналогично контурам расхода. Шумы могут быть не столь интенсивными, как при регулировании расхода, и значения зоны пропорционального регулирования, как правило, будут меньше.

Давление газа

Настройка осуществляется аналогично контурам уровня с использованием высокого значения интегральной составляющей. Регулятор, работающий только в пропорциональном режиме, обеспечивает адекватное регулирование, но с определенным изменением контрольной точки в зависимости от состояния процесса по причине пропорционального отклонения. Так как зона пропорционального регулирования может, как правило, оказаться очень небольшой (менее 100% и, нередко, примерно от 5 до 20%), то такое отклонение будет незначительным.
Отрегулировав более 80% контуров стандартной установки, переходим к более труднорегулируемым контурам, а именно: температуре, давлению паров и составу. Сюда же относится температура, на основании которой определяется состав среды во многих колоннах дистилляции.

Труднорегулируемые контуры

Существует две способа настройки труднорегулируемых контуров. Первый способ заключается в использовании безопасных исходных настроек: зона пропорционального регулирования 100%, интегральное время 5 — 10 минут, без дифференциальной составляющей. Переключите регулятор в автоматический режим при результатах измерения, близких к требуемой уставке.
При возникновении циклических колебаний определите время от одного пика до другого (от верхней точки до верхней точки или от нижней точки до нижней точки). Это – период контура управления. Если отклонение каждого пика от уставки будет больше отклонения предыдущего пика, увеличьте зону пропорционального регулирования (в два, три и более раз) до тех пор, пока увеличение амплитуды в цикле не прекратиться.
Если исходное интегральное время составляет менее половины периода, оно слишком короткое, что, возможно, и вызывает циклическое срабатывание. Увеличьте интегральное время. По мере увеличения интегрального времени период должен сокращаться. Если период примерно в два раза превышает интегральное время и происходит затухание колебаний, это означает, что работа почти полностью закончена. При отсутствии помех измерения следует установить дифференциальную составляющую, равную четверти интегрального времени. Дождитесь изменения параметров или попросите оператора немного скорректировать уставку в безопасном направлении. Выполните повторную настройку зоны пропорционального регулирования, чтобы обеспечить приемлемое гашение колебаний после выхода из режима. Повторяйте эти действия, пока не получите нормальный отклик контура.
Проконтролируйте контур в течение нескольких часов, чтобы убедиться в стабильности его работы. Некоторые контуры стабильны при небольших изменениях параметров, но начинают осциллировать при значительных изменениях. Увеличьте зону пропорционального регулирования, если это необходимо, чтобы обеспечить стабильность контура при значительных отклонениях от заданного режима.
Если этот ускоренный метод оказался в вашем случае неэффективным или если вы хотите действовать более методично, следуйте приведенной ниже методике. Она работает во всех случаях и не оставляет сомнений относительно характеристик контура управления.

Стандартный метод настройки регуляторов

1. Переключите регулятор в ручной режим работы, когда процесс достаточно стабилен и на установке не ожидается резких отклонений от заданного режима. Установите D (производную отклонения или дифференциальную составляющую у некоторых регуляторов) на минимальное, а I (интегральное время или интегральное составляющую у некоторых регуляторов) на максимальное значение.
2. Для начала выберите уставку, равную результатам измерения и установите зону пропорционального регулирования (P) на 100% (или коэффициент усиления на 1,0 у некоторых регуляторов). Немного измените выходной сигнал и переключите регулятор в автоматический режим. Зарегистрируйте исходное положение клапана на тот случай, если вам потребуется вернуться к нему в процессе настройки.
3. При отсутствии колебаний повторите п. 2, уменьшая зону пропорционального регулирования (возможно, до половины первоначального значения). Продолжайте уменьшать зону пропорционального регулирования, пока не начнутся колебания. Если с первой попытки возникнут колебаний с возрастающей амплитудой, верните регулятор в ручной режим и установите клапан в исходное положение, зарегистрированное в п. 2. Удваивайте зону пропорционального регулирования и повторяйте попытки, пока не получите равномерные или почти равномерные колебания. Замерьте период (определяемый как время отработки одного полного цикла)
4. Для ПИ-регулятора:
Установите I = период х 0,82.

Период увеличится приблизительно на 43%. Каждый пик должен составлять примерно половину от амплитуды предыдущего пика. Это называется гашением амплитуды на четверть.

5. Для ПИД-регулятора:
Установите I = период х 0,5.
Установите D = период х 0,125.
Удвойте зону пропорционального регулирования.
Период уменьшится примерно на 15%.
Выполните повторную настройку зоны пропорционального регулирования, если необходимо большее или меньшее демпфирование.
6. Следует помнить о том, что безопасными являются большие значения I и малые значения D. Данные указания предназначены для регуляторов, настраиваемых в минутах на повтор. Некоторые изготовители используют обратное отношение I и D, при этом наибольшее значение соответствует наименьшему и наоборот.
7. При зашумленных результатах измерения (в особенности это относится к контурам Ph) использование дифференциальной составляющей, как правило, невозможно. Ни в коем случае не устанавливайте дифференциальную составляющую, которая превышает интегральную.

Каскадирование и другие виды взаимодействия контуров управления

Сначала выполните настройку вторичного контура (т.е. расхода) в режиме локальной уставки. Уменьшите интегральную составляющую до минимально допустимого значения. Переключите вторичный контур в режим работы с удаленной уставкой и выполните настройку первичного контура (т.е. уровня). Значение интегральной составляющей первичного регулятора не должно быть меньше помноженного на 4 значения интегральной составляющей вторичного регулятора. Эти же правила применимы и для контуров, взаимодействующих через технологический процесс.
Примером такого взаимодействия через технологический процесс является контур давления в колонне и температурный контур с компенсацией по давлению, используемые для управления ректификационной колонной. Настройте контур давления (который является самым быстрым контуром в данном примере) на минимальную интегральную составляющую, а затем установите интегральное время регулятора температуры, не менее, чем в 4 раза превышающее интегральное время контура давления. Для проверки взаимодействия этих двух контуров при их циклическом срабатывании с аналогичным периодом, переведите один из контуров в ручной режим. Прекращение цикла указывает на возможное наличие проблемы, вызванной взаимодействием. Переместите контуры или используйте описанную выше методику минимизации колебаний.

С дополнительными материалами по настройке ПИД регуляторов Вы можете ознакомиться .

Узнать больше про регуляторы и алгоритмы работы регуляторов Вы можете .

Для закрепления полученных знаний предлагаем Вам воспользоваться программой имитации контуров регулирования

Простой дискретный алгоритм ПИД регулятора

Поддерживается всеми микроконтроллерами AVR

ПИД функция использует 534 байта flash памяти и 877 циклов процессора (IAR - low size оптимизация)

1 Введение

Это руководство описывает простую реализацию дискретного пропорционально-интегрально-дифференциального (ПИД) контроллера.

При работе с приложениями, где выходной сигнал системы должен изменяться в соответствии с опорным значением, требуется алгоритм управления. Примерами таких приложений являются блок управления двигателем, блок управления температурой, давлением, расходом жидкости, скорости, силы или других переменных. ПИД-регулятор может быть использован для управления любой измеряемой переменной.


В течение долгого времени в области управления использовались многие решения, но ПИД-регуляторы могут стать "промышленным стандартом" из-за своей простоты и хорошей производительности.

Для получения дополнительной информации о ПИД-регуляторах и их применении читатель должен обратиться к другим источникам, например, PID Controllers by K. J. Astrom & T. Hagglund (1995)

Рисунок 1-1. Типичные отклик ПИД-регулятора на ступенчатое изменение опорного сигнала

2. ПИД регулятор

На рисунке 2-1 показана схема системы с ПИД-регулятором. ПИД-регулятор сравнивает измеренное значение процесса Y с заданным опорным значением Y0. Затем разница, или ошибка, E, обрабатывается для расчета нового входного процесса U. Этот новый входной процесс будет пытаться приблизить значение измеряемого процесса к заданному значению.

Альтернативой системе управления с замкнутым контуром, является система управления с открытым контуром. Открытый контур управления (без обратной связи) во многих случаях не является удовлетворительным, и его применение часто невозможно из-за свойств системы.

Рисунок 2-1. Управляющая система с замкнутым контуром на основе ПИД-регулятора

В отличие от простых алгоритмов управления, ПИД-регулятор способен управлять процессом, основываясь на его истории и скорости изменения. Это дает более точный и стабильный метод управления.

Основная идея в том, что контроллер получает информацию о состоянии системы с помощью датчика. Затем вычитает измеренное значение из опорного для вычисления ошибки. Ошибка будет обрабатываться тремя путями: обрабатываться в настоящем времени пропорциональной составляющей, возвращаться в прошлое, используя интегральную составляющую, и предвидеть будущее, через дифференциальную составляющую.

Рисунок 2-2 показывает схемное решение ПИД-регулятора, где Тр, Ti, и Td обозначают постоянные времени пропорциональной, интегральной и дифференциальной составляющих соответственно.

Рисунок 2-2. Схема ПИД-регулятора

2.1 Пропорциональная составляющая

Пропорциональная составляющая (П) дает управляющий сигнал пропорционально вычисленной ошибке. Использование только одного пропорционального управления дает стационарную ошибку всегда, кроме случаев, когда управляющий сигнал равен нулю, а значение системного процесса равно требуемой величине. На рис. 2-3 стационарная ошибка в значении системного процесса появляется после изменения опорного сигнала (ref). Использование слишком большого П-члена даст неустойчивую систему.

Рисунок 2-3. Отклик П контроллера на ступенчатое изменение опорного сигнала

2.2 Интегральная составляющая

Интегральная составляющая (И) представляет собой предыдущих ошибок. Суммирование ошибки будет продолжаться до тех пор, пока значение системного процесса не станет равно нужному значению. Обычно интегральную составляющую используют вместе с пропорциональной, в так называемых ПИ-регуляторах. Использование только интегральной составляющей дает медленный отклик и часто колебательную систему. Рисунок 2-4 показывает ступенчатый отклик И и ПИ-регуляторов. Как видите отклик ПИ-регулятора не имеет стационарной ошибки, а отклик И-регулятора очень медленной.

Рисунок 2-4. Отклик И- и ПИ-контроллера на ступенчатое изменение контролируемой величины

2.3 Дифференциальная составляющая

Дифференциальная составляющая (Д) представляет собой скорость изменения ошибки. Добавление этой составляющей улучшает отклик системы на внезапное изменение ее состояния. Дифференциальная составляющая Д обычно используется с П или ПИ алгоритмами, как ПД или ПИД контроллеры. Большая дифференциальная составляющая Д обычно дает неустойчивую систему. Рисунок 2-5 показывает отклики Д и ПД- контроллера. Отклик ПД-контроллера дает быстрый рост значения процесса, чем П контроллер. Обратите внимание, что дифференциальная составляющая Д ведет себя по существу как фильтр верхних частот для сигнала ошибки и, таким образом легко делает систему нестабильной и более чувствительной к шуму.

Рисунок 2-5. Отклик Д- и ПД-контроллера на ступенчатое изменение опорного сигнала

ПИД-регулятор дает лучшую производительность, поскольку использует все составляющие вместе. Рисунок 2-6 сравнивает П, ПИ, и ПИД-регуляторы. ПИ улучшает П, удалив стационарную ошибку, и ПИД улучшает ПИ более быстрым откликом.

Рисунок 2-6. Отклик П-, ПИ- и ПИД-регулятора на ступенчатое изменение опорного сигнала

2.4. Настройка параметров

Наилучший путь найти необходимые параметры ПИД алгоритма - это использование математической модели системы. Однако часто подробного математического описания системы нет и настройки параметров ПИД-регулятора могут быть выполнены только экспериментально. Поиск параметров для ПИД-регулятора может быть сложной задачей. Здесь большое значение имеют данные о свойствах системы и различных условиях ее работы. Некоторые процессы не должны позволить перерегулирования процесса переменной от заданного значения. Другие процессы должны минимизировать потребление энергии. Также важнейшим требованием является стабильность. Процесс не должен колебаться ни при каких условиях. Кроме того, стабилизация должна наступать в течение определенного времени.

Существуют некоторые методы для настройки ПИД-регулятора. Выбор метода будет зависеть в значительной степени от того, может ли быть процесс автономным для настройки или нет. Метод Циглера-Николса это известный не автономная метод настройки. Первым шагом в этом методе является установка И и Д коэффициентов усиления в нуль, увеличивая усиление П до устойчивого и стабильного колебаний (как можно ближе). Тогда критический коэффициент усиления Кс и период колебаний Pc записывается и П, И и Д значения корректируются с использованием Таблицы 2-1.

Таблица 2-1. Расчет параметров по методу Циглера-Николса

Дальнейшая настройка параметров часто необходима для оптимизации производительности ПИД-регулятора. Читатель должен отметить, что есть системы, где ПИД-регулятор не будет работать. Такими могут быть нелинейные системы, но в целом, проблемы часто возникают с ПИД управлением, когда системы неустойчивы и влияние входного сигнала зависит от состояния системы.

2.5. Дискретный ПИД-регулятор

Дискретный ПИД-регулятор будет считывать ошибку, вычислять и выдавать управляющий сигнал за время выборки Т. Время выборки должно быть меньше, чем наименьшая постоянная времени в системе.

2.5.1. Описание алгоритма

В отличие от простых алгоритмов управления, ПИД-регулятор способен манипулировать управляющим сигналом на основе истории и скорости изменения измеряемого сигнала. Это дает более точный и стабильный метод управления.

На рисунке 2-2 показано схемное решение ПИД-регулятора, где Тр, Ti, и Td обозначают постоянные времени пропорциональной, интегральной, и дифференциальной составляющих соответственно.

Передаточная функция системы, изображенной на рисунке 2-2 имеет вид:

Аппроксимируем интегральную и диффиренциальную составляющие, чтобы получить дискретный вид

Чтобы избежать этого изменения в значении опорного процесса делает любое нежелательное быстрое изменение на управляющем входе, контроллер улучшить основе производных срок на значений процесса только:


3. Реализация ПИД-регулятора на Си

К этому документу прилагается рабочее приложение, реализованное на C. Полную описание исходного кода и информации о компиляции можно найти в файле "readme.html".

Рисунок 3-1. Блок-схема демонстрационного приложения

На рисунке 3-1 показана упрощенная схема демо приложения.

ПИД-регулятор использует структуру для хранения своего статуса и параметров. Эта структура инициализируется функцией main, и только указатель на него передается функциям Init_PID() и PID().

Функция PID () должна быть вызвана для каждого интервала времени T, это задается таймером, который устанавливает флаг PID_timer, когда время выборки прошло. Когда PID_timer флаг установлен, основная программа читает эталонное значение процесса и системное значение процесса, вызывается функция PID () и выводится результат на управляющий вход.

Для повышения точности p_factor, i_factor и d_factor увеличиваются в 128 раз. Результат ПИД алгоритма позже уменьшается путем деления на 128. Значение 128 используется для обеспечения оптимизации при компиляции.

Кроме того, влияние Ifactor и Dfactor будет зависеть от времени T.

3.1. Integral windup

Когда входной процесс, U, достигает достаточно высокого значения, он становится ограниченным. Либо внутренним числовом диапазоном ПИД-регулятора, либо выходным диапазоном контроллера или подавляется в усилителях. Это произойдет, если есть достаточно большая разница между измеряемым значением и опорным значением, как правило, это происходит потому что процесс имеет большие нарушения, чем система способна обрабатывать.

Если контроллер использует интегральную составляющую, эта ситуация может быть проблематичной. В такой ситуации интегральная составляющая будет постоянно суммироваться, но при отсутствии больших нарушений, ПИД-регулятор начнет компенсировать процесс пока интегральная сумма не вернется к норме.

Это проблему можно решить несколькими способами. В данном примере максимальная интегральная сумма ограничена и не может быть больше, чем MAX_I_TERM. Правильный размер MAX_I_TERM будет зависеть от системы.

4. Дальнейшее развитие

ПИД-регулятор, представленый здесь, является упрощенным примером. Контроллер должен работать хорошо, но в некоторых приложениях может быть необходимо, чтобы контроллер был еще более надежным. Может быть необходимо добавление насыщения коррекции в интегральной составляющей, на основе пропорциональной составляющей только на значении процесса.

В расчете Ifactor и Dfactor время выборки T это часть уравнения. Если время выборки Т использоваться намного меньше или больше чем на 1 секунду, точность либо Ifactor или Dfactor будет недостаточной. Можно переписать алгоритм ПИД и масштабирования, чтобы точность интегральной и диффиренциальной составляющих сохранилась.

5. Справочная литература

K. J. Astrom & T. Hagglund, 1995: PID Controllers: Theory, Design, and Tuning.
International Society for Measurement and Con.

6. Файлы

AVR221.rar

Перевел Кирилл Владимиров по просьбе

Значительно улучшить точность регулирования можно применением ПИД-закона (Пропорционально-Интегрально-Дифференциальный закон регулирования).
Для реализации ПИД-закона используются три основные переменные:
P – зона пропорциональности, %;
I – время интегрирования, с;
D – время дифференцирования, с.
Ручная настройка ПИД-регулятора (определение значений параметров Р, I, D), обеспечивающая требуемое качество регулирования, достаточно сложна и на практике редко используется. ПИД-регуляторы серии UT/UP обеспечивают автоматическую настройку ПИД-параметров под конкретный процесс регулирования, сохраняя при этом возможность их ручной корректировки.

Пропорциональная составляющая
В зоне пропорциональности, определяемой коэффициентом Р, сигнал управления будет изменяться пропорционально разнице между уставкой и действительным значением параметра (рассогласованию):

сигнал управления = 100/P E,

где E – рассогласование.
Коэффициент пропорциональности (усиления) К является величиной обратнопропорциональной Р:

Зона пропорциональности определяется относительно заданной уставки регулирования, и внутри этой зоны сигнал регулирования изменяется от 0 до 100%, т. е. при равенстве действительного значения и уставки выходной сигнал будет иметь значение 50%.

где Р – зона пропорциональности;
ST – уставка регулирования.
Например:
диапазон измерения 0…1000 °С;
уставка регулирования ST = 500 °С;
зона пропорциональности P = 5%, что составляет 50 °С (5% от 1000 °С);
при значении температуры 475 °С и ниже управляющий сигнал будет иметь величину 100%; при 525 °С и выше – 0%. В диапазоне 475…525 °С (в зоне пропорциональности) управляющий сигнал будет изменяться пропорционально величине рассогласования с коэффициентом усиления К = 100/Р = 20.
Уменьшение значения зоны пропорциональности Р увеличивает реакцию регулятора на рассогласование, т. е. малому рассогласованию будет соответствовать большее значение управляющего сигнала. Но при этом, из-за большого усиления, процесс принимает колебательный характер около значения уставки, и точного регулирования добиться не удастся. При излишнем увеличении зоны пропорциональности регулятор будет слишком медленно реагировать на образующееся рассогла­сование и не сможет успевать отслеживать динамику процесса. Для того, чтобы компенсировать эти недостатки пропорционального регулирования, вводится дополнительная временная характеристика – интегральная составляющая.

Интегральная составляющая
Определяется постоянной времени интегрирования I, является функцией времени и обеспечивает изменение коэффициента усиления (сдвиг зоны пропорциональности) на заданном промежутке времени.


сигнал управления = 100/P E + 1/I ∫ E dt.

Как видно из рисунка, если пропорциональная составляющая закона регулирования не обеспечивает уменьшение рассогласования, то интегральная составляющая начинает на периоде времени I плавно увеличивать коэффициент усиления. Через период времени I процесс этот повторяется. Если же рассогласование мало (или быстро уменьшается), то коэффициент усиления не увеличивается и, в случае равенства значения параметра заданной уставке, принимает какое-то минимальное значение. В этом плане об интегральной составляющей говорят как о функции автоматического выключения регулирования. В случае регулирования по ПИД-закону переходная характеристика процесса будет представлять собой колебания, постепенно затухающие к значению уставки.

Дифференциальная составляющая
Многие объекты регулирования достаточно инерционны, т. е. имеют задержку реакции на приложенное воздействие (мертвое время) и продолжают реагировать после снятия управляющего воздействия (время задержки). ПИД-регуляторы на таких обьектах будут всегда запаздывать с включением/выключением управляющего сигнала. Для устранения этого эффекта вводится дифференциальная составляющая, определяемая постоянной времени дифференцирования D, и обеспечивается полная реализация ПИД-закона управления. Дифференциальная составляющая есть производная во времени от рассогласования, т. е. является функцией скорости изменения параметра регулирования. В случае, когда рассогласование становится постоянной величиной, дифференциальная составляющая перестает оказывать воздействие на сигнал управления.

сигнал управ. = 100/P E + 1/I ∫ E dt + D d/dt E.

С введением дифференциальной составляющей регулятор начинает учитывать мертвое время и время задержки, заранее изменяя сигнал управления. Это позволяет значительно уменьшить колебания процесса около значения уставки и добиться более быстрого завершения переходного процесса.
Таким образом, ПИД-регуляторы, генерируя управляющий сигнал, учитывают характеристики самого объекта управления, т.е. проводят анализ рассогласования на величину, на продолжительность и скорость изменения. Иными словами, ПИД-регулятор "предвидит" реакцию объекта регулирования на сигнал управления и начинает изменять управляющее воздействие не при достижении значения уставки, а заранее.

5. Передаточная функция какого звена представлена: К(р) = К/Тр

Перед тем, как рассчитывать параметры регулятора, необходимо сформулировать цель и критерии качества регулирования, а также ограничения на величины и скорости изменения переменных в системе. Традиционно основные качественные показатели формулируются исходя из требований к форме реакции замкнутой системы на ступенчатое изменение уставки. Однако такой критерий очень ограничен. В частности, он ничего не говорит о величине ослабления шумов измерений или влияния внешних возмущений, может дать ошибочное представление о робастности системы.

Поэтому для полного описания или тестирования системы с ПИД-регулятором нужен ряд дополнительных показателей качества, о которых речь пойдет ниже.

В общем случае выбор показателей качества не может быть формализован полностью и должен осуществляться исходя из смысла решаемой задачи.

5.5.1. Качество регулирования

Выбор критерия качества регулирования зависит от цели, для которой используется регулятор. Такой целью может быть:

  • поддержание постоянного значения параметра (например, температуры);
  • слежение за изменением уставки или программное управление;
  • управление демпфером в резервуаре с жидкостью и т.д.

Для той или иной задачи наиболее важными могут быть следующие факторы:

  • форма отклика на внешнее возмущение (время установления, перерегулирование, коэффициент затухания и др.);
  • форма отклика на шумы измерений;
  • форма отклика на сигнал уставки;
  • робастность по отношению к разбросу параметров объекта управления;
  • требования к экономии энергии в управляемой системе;
  • минимум шумов измерений и др.

Для классического ПИД-регулятора параметры, которые являются наилучшими для слежения за уставкой, в общем случае отличаются от параметров, наилучших для ослабления влияния внешних возмущений. Для того, чтобы оба параметра одновременно были оптимальными, необходимо использовать ПИД-регуляторы с двумя степенями свободы (см. раздел "Принцип разомкнутого управления").

Например, точное слежение за изменением уставки необходимо в системах управления движением, в робототехнике. В системах управления технологическими процессами, где уставка обычно остается длительное время без изменений, требуется максимальное ослабление влияния нагрузки (внешних возмущений). В системах управления резервуарами с жидкостью требуется обеспечение ламинарности потока (минимизация дисперсии выходной переменной регулятора).

Ослабление влияния внешних возмущений

Как было показано в разделе "Запас устойчивости и робастность" , обратная связь ослабляет влияние внешних возмущений в раз за исключением тех частот, на которых . Внешние возмущения могут быть приложены к объекту в самых разных его частях, однако, когда конкретное место неизвестно, считают, что возмущение воздействует на вход объекта. В этом случае отклик системы на внешние возмущения определяется передаточной функцией (см. (5.42))

Таким образом, для ослабления влияния внешних возмущений (в частности, влияния нагрузки) можно уменьшить постоянную интегрирований .

Во временной области реакцию на внешние возмущения оценивают по отклику на единичный скачок (см. рис. 5.56).

Ослабление влияния шумов измерений

Передаточная функция от точки приложения шума (рис. 5.35) на выход системы имеет вид (см. (5.42)):

.

Благодаря спаду АЧХ объекта на высоких частотах функция чувствительности стремится к 1 (см. рис. 5.81). Поэтому ослабить влияние шумов измерений с помощью обратной связи невозможно. Однако эти шумы легко устраняются применением фильтров нижних частот, а также правильным экранированием и заземлением [Денисенко , Денисенко ].

Робастность к вариации параметров объекта

Замкнутая система остается устойчивой при изменении параметров объекта на величину , если выполняется условие (5.100).

Критерии качества во временной области

Для оценки качества регулирования в замкнутой системе с ПИД-регулятором обычно используют ступенчатое входное воздействие и ряд критериев для описания формы переходного процесса (рис. 5.84):

Для систем управления движением в качестве тестового сигнала чаще используют не функцию скачка, а линейно нарастающий сигнал, поскольку электромеханические системы обычно имеют ограниченную скорость нарастания выходной величины.

Приведенные выше критерии используются как для оценки качества реакции на изменение уставки, так и на воздействие внешних возмущений и шумов измерений.

Частотные критерии качества

В частотной области обычно используются следующие критерии, получаемые из графика амплитудно-частотной характеристики замкнутой системы (см. рис. 5.85):

Частотные критерии у реальных регуляторов не могут быть однозначно связаны с временными критериями из-за нелинейностей (обычно это нелинейности типа ограничений) и алгоритмов устранения эффекта интегрального насыщения. Однако приближенно можно установить следующие зависимости между критериями в частотной и временной области:

5.5.2. Выбор параметров регулятора

В общей теории автоматического управления структура регулятора выбирается исходя из модели объекта управления. При этом более сложным объектам управления соответствуют более сложные регуляторы. В нашем же случае структура регулятора уже задана - мы рассматриваем ПИД-регулятор, причем эта структура очень простая. Поэтому ПИД-регулятор не всегда может дать хорошее качество регулирования, хотя в подавляющем большинстве приложений в промышленности применяются именно ПИД-регуляторы.

Впервые методику расчета параметров ПИД-регуляторы предложили Зиглер и Никольс в 1942 году [Ziegler ]. Эта методика очень проста и дает не очень хорошие результаты. Тем не менее, она до сих пор часто используется на практике, хотя с тех пор появилось множество более точных методов.

После расчета параметров регулятора обычно требуется его ручная подстройка для улучшения качества регулирования. Для этого используется ряд правил, хорошо обоснованных теоретически.

Для настройки ПИД-регуляторов можно использовать и общие методы теории автоматического управления, такие, как метод назначения полюсов и алгебраические методы. В литературе опубликовано и множество других методов, которые имеют преимущества в конкретных применениях. Мы приводим ниже только самые распространенные из них.

Метод CHR использует аппроксимацию объекта моделью первого порядка с задержкой (5.5).

  • увеличение пропорционального коэффициента увеличивает быстродействие и снижает запас устойчивости;
  • с уменьшением интегральной составляющей ошибка регулирования с течением времени уменьшается быстрее;
  • уменьшение постоянной интегрирования уменьшает запас устойчивости;
  • увеличение дифференциальной составляющей увеличивает запас устойчивости и быстродействие.

Перечисленные правила применяются также для регуляторов, использующих методы экспертных систем и нечеткой логики.

Ручную настройку с помощью правил удобно выполнять с применением интерактивного программного обеспечения на компьютере, временно включенном в контур управления. Для оценки реакции системы на изменение уставки, внешние воздействия или шумы измерений подают искусственные воздействия и наблюдают реакцию на них. После выполнения настройки значения коэффициентов регулятора записывают в память ПИД-контроллера, а компьютер удаляют.

Отметим, что применение правил возможно только после предварительной настройки регулятора по формулам. Попытки настроить регулятор без начального приближенного расчета коэффициентов могут быть безуспешными. Сформулированные выше правила справедливы только в окрестности оптимальной настройки регулятора. Вдали от нее эффекты могут быть иными, см. раздел "Классический ПИД-регулятор"

При регулировке тепловых процессов настройка по правилам может занять недопустимо много времени.

5.5.4. Методы оптимизации

Методы оптимизации для нахождения параметров регулятора концептуально очень просты и аналогичны численным методам идентификации параметров объекта (см. раздел "Методы минимизации критериальной функции"). Выбирается критерий минимизации, в качестве которого может быть один из показателей качества или комплексный критерий, составленный из нескольких показателей с разными весовыми коэффициентами. К критерию добавляются ограничения, накладываемые требованиями робастности. Таким путем получается критериальная функция, зависящая от параметров ПИД-регулятора. Далее используются численные методы минимизации критериальной функции с заданными ограничениями, которые и позволяют найти искомые параметры ПИД-регулятора.

Методы, основанные на оптимизации, имеют следующие достоинства:

  • позволяют получить оптимальные значения параметров, не требующие дальнейшей подстройки;
  • не требуют упрощения модели объекта, модель может быть как угодно сложной;
  • позволяют быстро достичь конечного результата (избежать процедуры длительной подстройки параметров).

Однако реализация данного подхода связана с большими проблемами, которые не один десяток лет являются предметов научных исследований. К этим проблемам относится:

  • низкая надежность метода (во многих случаях вычислительный процесс может расходиться и искомые коэффициенты не будут найдены);
  • низкая скорость поиска минимума для овражных функций и функций с несколькими минимумами.

Тем не менее, методы оптимизации являются мощным средством настройки ПИД-регуляторов с помощью специально разработанных для этого компьютерных программ (см. раздел

Я брал год назад по другой ссылке за 50 с лишним долларов, но там комплект с еще одним, более навороченным термоконтроллером. Поэтому даю ссылку на другой лот с вроде бы нормальным продавцом и множеством заказов.
Брался для совсем других целей, но оказался приделан к кухонной электродуховке:) В этом применении работает отлично:)
Подробнее под катом.

Год назад я заказал себе для паяльной печи комплект из двух термоконтроллеров - один обозреваемый и второй гораздо более функциональный. Почему-то у меня появилась глупая мысль использовать их вместе, но когда уже получил заказ резко поумнел и этот сравнительно простой термоконтроллер остался не удел.
Итак, что этот термоконтроллер может. Самое главное, конечно же, это поддерживать заданную температуру, управляя нагревателем. Но чем он лучше любого термоконтроллера за 1.5-2 бакса, которых полно на Али? Самое главное - тем, что он обеспечивает регулирование температуры PID-регулятором.

постараюсь объяснить попроще что такое PID-регуляция:)

По русски это понятие, кстати, сокращается в те же буквы - ПИД, Пропорционально-Интегрирующе-Дифференцирующая регуляция.
В инете множество статей, посвященных ПИД, но очень мало рассказывающих об этом понятными словами. Я не популяризатор, но постараюсь изложить принцип работы ПИД-регуляторов максимально доступно:)

ЗЫ: конкретные цифры на графиках могут не совпадать с цифрами в примерах, но принцип сохраняется:)

Представьте, что у нас есть банка с водой, температуру которой нужно поддерживать 70 градусов с помощью вставленного в эту банку нагревателя мощностью 100 Ватт. Для измерения температуры в воду опущен термометр.
Самый простой способ сделать это как раз применяется в однбаксовых терморегуляторах: включаем нагреватель, температура достигает заданной, выключаем нагреватель, температура падает ниже заданной - включаем нагреватель, и т.д.
Элементарнейший и дешевейший способ, не требующий никаких вычислительных ресурсов. На этом принципе делают как цифровые контроллеры, так и аналоговые, и даже механические. Однако есть у него большой недостаток - он не поддерживает более-менее точно заданную температуру. С таким регулятором температура воды в нашей банке будет гулять вокруг заданной, то превышая ее, то падая ниже. График температуры будет напоминать пилу. Это называется пороговый регулятор, то есть который включает или выключает нагреватель по достижении заданных порогов:

А что если не просто включать-выключать нагреватель, а регулировать его мощность - чем температура воды ниже заданной тем больше мощности подаем на нагреватель? Звучит логично и вот так у нас и начинает появляться ПИД:) Точнее, появилась первая его составляющая Пс - пропорциональная, значение которой прямо пропорционально разнице между заданной и текущей температурами. Итак, будем выдавать на нагреватель значение Пс : при текущей температуре воды 20 градусов он выдаст в нагреватель 70-20=50 Ватт. Когда вода нагреется до 40 градусов, он уже будет выдавать 70-40=30 Ватт. При температуре воды 60 градусов он будет выдавать 70-60=10 Ватт. Отлично, никаких прыжков вокруг заданной температуры, все плавно:) Однако есть одна закавыка: при мощности на нагревателе 10 Ватт он уже не может и дальше нагревать воду, а может только удерживать эти достигнутые 60 градусов. Итак, вода 60 градусов, Пс соответственно выдает 10 Ватт и температура воды стоит на месте, до 70 градусов с таким регулятором ей не добраться:

Нужно что-то добавлять к пропорциональной составляющей, какое-то значение, причем не постоянное. На помощь приходит Ис - интегрирующая составляющая. Это накопитель ошибок. При каждом измерении в него добавляется разница между заданной и текущей температурами. Если заданная температура больше, то добавляется положительное число, если меньше, то отрицательное. У этой составляющей есть заданное максимальное значение, превысить которое она не может, то есть если при очередном добавлении оказывается, что сумма превысит максимум, то Ис становится равной максимуму, но не больше. То же касается нуля - отрицательным числом она тоже не может стать. Пусть у нас этот максимум будет равен мощности нагревателя - 100. Теперь на нагреватель будет выдаваться суммарное значение мощности Пс +Ис . Для примера последовательность температур и что при этом получается:
1. Температура 20 градусов, Ис изначально равна нулю, Пс =70-20=50, в нагреватель выдается Ис +Пс =0+50=50 Ватт.
2. Вода нагрелась до 30 градусов, Ис =0(ее предыдущее значение)+(70-30)=40, Пс =70-30=40, в нагреватель выдается Ис +Пс =40+40=80 Ватт.
3. Вода нагрелась до 40 градусов, Ис =40(ее предыдущее значение)+(70-40)=70, Пс =70-40=30, в нагреватель выдается Ис +Пс =70+30=100 Ватт.
4. Вода нагрелась до 60 градусов, Ис =70(ее предыдущее значение)+(70-60)=80, Пс =70-60=10, в нагреватель выдается Ис +Пс =80+10=90 Ватт.
Смотрите-ка, пока все выглядит неплохо, вода уже 60 градусов, а нагреватель все еще греет воду, хотя и начал снижать мощность:)
5. Вода нагрелась до 70 градусов, Ис =80(ее предыдущее значение)+(70-70)=80, Пс =70-70=0, в нагреватель выдается Ис +Пс =80+0=80 Ватт.
6. Вода нагрелась до 80 градусов, Ис =80(ее предыдущее значение)+(70-80)=70, Пс =70-80=-10, в нагреватель выдается Ис +Пс =70+(-10)=60 Ватт.
Вода перегрелась. И хотя, как видно, мощность пошла вниз, температура еще будет какое-то время колебаться пока не успокоится на заданном значении:


Это называется перерегулирование. Происходит оно из-за того, что и нагреватель и термометр и, главное, вода имеют какую-то инерцию, регулятор получает обратную связь (показания температуры) с определенным запаздыванием. При подаче на нагреватель полной мощности вода не нагреется мгновенно до 100 градусов, и точно так же она не остынет мгновенно при выключении нагревателя. Регулятор посмотрел на температуру - холодная вода, добавил мощности. Через 2 секунды глянул - все еще холодная - опять добавил. А когда в очередной раз он обнаруживает, что вода уже дошла до нужной температуры то начинает выдавать мощность, накопленную в Ис , считая, что это как раз нужное для поддержания температуры значение мощности (на самом деле интегрирующая составляющая после устаканивания всех возмущений действительно содержит значение, необходимое для ровного поддержания регулируемой величины, а пропорциональная призвана только компенсировать случайные отклонения). Но для воды это много и она продолжает нагреваться. И только после превышения заданной температуры регулятор начинает снижать мощность. И эта качка продолжается некоторое время пока значение Ис не придет к нужной величине.
Что можно предпринять в таком случае? Ну, например можно понизить влияние на выходную мощность Ис . Это называется коэффициент, у каждой составляющей ПИД может быть свой коэффициент, которым можно повышать или понижать влияние этой составляющей на выходной результат. Уменьшим влияние Ис до 0.3 от его значения - Ис *0.3:

Уже лучше, но все равно есть колебание в начале. Это из-за слишком большого влияния пропорциональной составляющей, давайте уменьшим и ее влияние в 2 раз - Пс *0.5:


Идеально, правда? :)
Нуу… Почти. Колебаний нет, но вот время нагрева увеличилось. Оно пришло к заданной температуре только к 25-му отсчету.
На самом деле зачастую используют ПИ-регулятор, без его дифференцирующей части и это вполне работает, как видно. Однако часто можно добиться еще лучшего результата с использованием третьей составляющей - дифференцирующей, Дс .
Она является «демпфером», не дающим регулируемому устройству слишком быстро менять свое состояние. В нашем примере Дс начнет снижать выходную мощность тем сильнее чем быстрее будет нагреваться вода, иными словами она не даст «разогнаться» графику роста температуры настолько, чтобы он проскочил заданную температуру:) При этом, пока до заданной температуры далеко влияние Дс не очень значительно на фоне других составляющих, температура может расти быстро. Но чем ближе она к заданной тем сильнее становится влияние Дс на фоне все уменьшающихся Ис и Пс .
Дс в отличии от Пс и Ис не прибавляется к выходному сигналу (в нашем примере- мощности), а вычитается из него. Она равна скорости изменения регулируемой величины (в нашем примере - температуры). Например, если в прошлый замер температура была 28 градусов, а в текущем замере она уже 31 градус, то Дс будет равна 3 - на столько температура выросла с прошлого замера, это скорость роста температуры. И это значение, возможно умноженное на свой коэффициент, вычитается из выходной мощности, потому эта составляющая и называется дифференцирующей:)
Вот что получится при добавлении Дс :


Как видно, температура вышла на режим гораздо быстрее и при этом без всплесков и колебаний. Попытку регулятора проскочить температуру вверх погасила как раз дифференцирующая составляющая.
Вот, если интересно, график изменения значений Пс , Ис и Дс в этом регуляторе в том же временном масштабе:

А вот что было бы без дифференцирующей составляющей при тех же условиях:

И еще раз коротким итогом:)
ПИД - это регулятор, который формирует сигнал воздействия на регулируемую величину из трех составляющих: пропорциональной, интегрирующей и дифференцирующей.
Пропорциональная составляющая добавляет в выходной сигнал сиюминутную разницу между заданной и текущей измеренной величинами (т.н. ошибку). Интегрирующая накапливает (интегрирует) разницы всех измерений и добавляет в выходной сигнал накопленное значение (но не превышающее заданного максимума). Дифференцирующая определяет скорость изменения регулируемой величины (на сколько она изменилась с прошлого измерения) и вычитает эту величину из выходного сигнала. Все три составляющие могут иметь свои коэффициенты, усиливающие или ослабляющие их влияние на выходной сигнал.

Уфф… :) Ну, я говорил, что не являюсь популяризатором, поэтому за доходчивость своего изложения не отвечаю. Но я старался:)

ЗЫ: самое веселое заключается в подборе коэффициентов этих составляющих, т.к. без правильных (хотя бы примерно) значений этих коэффициентов ПИД-регулятор или вообще не будет регулировать или будет регулировать очень плохо. Подбор идеальных коэффициентов, как я понял, дело весьма нетривиальное. Пока я не встречал в инете доступное объяснение как их рассчитывать, в основном приводятся методики их экспериментального подбора. Что, впрочем, достаточно логично, т.к. для расчета нужно столько всего знать о регулируемом механизме, сколько о нем не всегда знают даже его создатели:))

Основные параметры этого регулятора (именно этой модели - REX-C100FK02-V*AN):

  • питание - 24 вольта постоянного напряжения / 24 вольта переменного напряжения / 85-264 вольта переменного напряжения
  • потребление - не более 9 VA при питании 240 вольт
  • выход - напряжение, 12 вольт, сопротивление нагрузки 600 Ом и выше
  • тип подключаемой термопары - K (в настройках можно выбрать целую кучу типов, но я не уверен, что железо универсальное и поддерживает всю эту кучу)
  • диапазон регулирования температуры - 0-400 градусов Цельсия (зависит от типа термопары)
  • выход аварийной сигнализации - один выход, реле на замыкание
  • период цикла регулирования - 0.5 сек
  • метод регулирования - PID, вкл/выкл (дискретный), P, PI, PD (настраивается)
  • вес - около 170 грамм
  • крепление - в отверстие панели
Вот русскоязычный мануал на этот контроллер (нашел где-то в сети) -
А вот качественный англоязычный, чуть более полный, но по настройкам немного не соответствует -

И пролежал бы он у меня еще неизвестно сколько, если бы жена не пожаловалась, что в нашей электродуховке она не может запекать полимерную глину - температуру там нормально не выставить. Да и пироги порой подгорают:) Духовка из самых дешевых, увы:) И я вспомнил об этом контроллере. Мне он не понадобился, слишком примитивен, а вот для духовки - самое то. Но решил я не курочить духовку, а сделать отдельную коробочку с этим регулятором и твердотельным реле на 40 ампер. Точно такое же реле уже год трудится у меня на почти такой же духовке (переделанной в паяльную печь) и не жужжит.

Крепится контроллер очень просто - вставляется в панель и с обратной стороны поджимается рамкой с защелками. Рамка снабжена пружинными рычажками, поджимающими регулятор:


Все подключения производятся через винтовые клеммы на задней стенке:

Подключение очень понятно расписано как на наклейке на корпусе контроллера, так и в мануале.


Меня интересует: питание (220 вольт), выход управляющего напряжения (прямиком на твердотельное реле), вход термопары.
При желании можно еще подключить выход аварийной сигнализации. Ее можно отключить или настроить на один из режимов:

  • превышение заданной температуры
  • падение ниже заданной температуры
  • попадание в заданный промежуток температуры
  • выход за заданный промежуток температуры
Это может быть полезно, например, для аварийного отключения питания нагревателя, на случай если будет пробит ключ, управляющий нагревателем (мосфет, твердотельное реле) и начнется неконтролируемый разогрев.

Внутренности

Разбирается контроллер очень легко и даже без применения инструментов. Для этого нужно нажать защелку на корпусе (у нее даже есть выступы для нажатия пальцем):


и потянуть корпус, второй рукой удерживая рамку передней панели:

Контроллер состоит из трех плат: собственно управляющая, блок питания и дисплей с кнопками. Платы управления и БП соединяются довольно жестким шлейфом, плата дисплея припаяна к плате управления:





С клеммниками платы соединяются через скользящие контакты:

Платы крупнее:







Общий план был такой - отдельная коробочка с контроллером и твердотельным реле на радиаторе, из нее выходят два силовых провода с вилкой и розеткой (да, розетка на проводе) и термопара. Термопара вставляется в духовку и зажимается ее дверцей, изоляция у термопары термоупорная, ничего ей не будет:)
Сначала мелькнула мысль напечатать корпус на 3D-принтере, но печатать такой размер из ABS на моем открытом всем сквознякам Anet A8 - геморрой, а PLA, размягчающийся уже при 55-60 градусах рядом с духовкой долго не проживет. Решил резать из литого поликарбоната толщиной 6 мм, их у меня есть несколько листов 50х50 см:)

Для начала нарисовал модель (стакан для масштаба):

Вот так оно будет собираться:

Верхняя крышка и одна стенка съемные, на винтах, остальное клееное. Правда, уже потом, когда все было сделано, до меня дошло, что лучше бы было сделать съемным дно, а не крышку, но переделывать не стал:)
Вырезал на фрезерном станке, так что размеры сошлись идеально. Неидеально сошлась только толщина, которая оказалась 5.9 мм вместо 6. Для более прочной склейки (или чтобы думать что так более прочно) по краям стенок сделал проточки, так что стенки соединяются полупазами:


И вот кучка запчастей готова к дальнейшей работе:

Сначала думал обклеить самоклейкой, но во-первых в магазине мне не попалась пленка нормального цвета, только цветочки да тканевые узоры, а во-вторых я не был уверен, что смогу обклеить без складок и щелей, так что решил красить.
Предварительная примерка показала что все сходится, поэтому закрепил стенки малярным скотчем и проклеил все стыки. Клеил дихлорметаном, держит железно. Набрал его в шприц с иглой, у которой отрезал скошенный носик, и прошелся иголкой по всем стыкам изнутри (даже по одному стыку, который не надо было клеить, увлекся:)). Дихлорметан очень текуч - моментально заполняет мельчайшие щели, и очень интенсивно испаряется, так что даже не пришлось давить поршень, тепло рук нагревало дихлорметан достаточно, чтобы его испарения создавали избыточное давление внутри шприца.
Сохнет:

А пока корпус сох, я откопал у себя кусок радиатора, который когда-то зачем-то заказывал на али (уже даже не помню зачем). По размерам он подошел идеально, разве что по длине пришлось отпилить нужный кусок.

Распечатал шаблон отверстий, прихватил его кусочками двухстороннего скотча к радиатору и просверлил отверстия:

После чего обнаружил, что слегка неправильно нарисовал модель твердотельного реле, и отверстия на радиаторе теперь не совсем совпадают с отверстиями в реле. К счастью, я ошибся очень удачно - во-первых не совпадало только одно отверстие, а во-вторых оно не совпадало так сильно, что совершенно не мешало просверлить правильное:) Так что все обошлось просто лишним отверстием:)

Через час корпус уже был достаточно прочным, чтобы можно было спокойно его крутить и примерять. И вот тут я обнаружил свой второй прокол в модели: сам-то контроллер по габаритам я нарисовал верно, а вот крепежную рамку с защелками рисовать не стал. И оказалось, что она теперь мешает крышке закрыться примерно на 3 мм. Пришлось класть крышку в станок и фрезеровать на ее внутренней стороне выемку.
Еще одна моя ошибка была в том, что узкие планки, которые я приклеил к стенкам и к которым должны прикручиваться крышки, я вырезал без отверстий для болтов. Решил, что приклею, а потом по месту просверлю. Сверлить ровно и именно там где наметил никогда не было моей сильной стороной. Короче, почти все отверстия в этих планках уехали. Из-за этого пришлось разбивать сверлом отверстия в крышках и зенковкой пытаться профрезеровать скосы для шляпок в ту же сторону:) Получился слегка колхоз…
Кстати, резьба в поликарбонате держит болты очень хорошо, никаких гаек не нужно.
Перед покраской слегка закруглил грани с помощью напильника и шкурки, процесс очень быстрый и легкий.
В процессе покраски я не делал фото, как-то забыл об этом, да там ничего интересного, в общем-то, и нет. Шкуркой заматировал поверхности, обезжирил, покрыл двумя слоями грунта и потом двумя слоями краски.

Почему такой цвет? А фиг его знает:) Просто кроме этого у меня были лишь черный, синий, красный и зеленый, а они мне не нравились в данном случае:) Ну и почему бы и нет:)

В отверстия для проводов я вставил специальные резиновые шайбы для таких случаев, брал их тоже на али:


(коцка - это результат моего нетерпения, полез ковырять корпус когда краска еще не высохла окончательно)
Так как они не предназначены для панелей толщиной 6 мм, пришлось с внутренней стороны делать под них выемки, оставляя стенки толщиной 1 мм:


Затянул в отверстия силовые провода, соединил заземление и одну из жил, из которой сделал отвод для запитки контроллера, как и от одной из вторых жил, идущей от вилки, прикрутил реле на термопасту к радиатору, а радиатор к корпусу:

Дальше все просто - провода к реле, отмерить длину проводов до контроллера, отрезать, зачистить, залудить, прикрутить…
Все провода, выходящие из корпуса я обтянул изнутри стяжками чтобы их случайно не выдернули. Стандартная практика.

Все соединил и включил посмотреть не бахнет ли что-нибудь салютом. Не бахнуло:


Там в глубине корпуса можно увидеть светящийся индикатор реле, значит все нормально, можно собирать:)

Для начала я решил устроить ему стресс-тест и подключил к нему вот такой тепловентилятор на 3 кВт:


Термопару при этом я посадил на радиатор реле и закрепил кусочком каптона чтобы контролировать температуру не только на ощупь.

Включил, тепловентилятор зажужал, а я пошел писать спойлер про ПИД-регулятор, время от времени отвлекаясь и проверяя температуру радиатора. Через 15 минут после старта температура дошла до 50 градусов. Еще через 20 минут она была уже 67 градусов и на этом значении продержалась следующие 30 минут пока я не выключил все это - в офисе стало жарко:) Вердикт - с духовкой 1.5-2 кВт справится без проблем:)

Повседневное (когда не нужно менять какие-то глубокие настройки) управление этим контроллером очень простое. Сразу после подачи питания она начинает пытаться регулировать температуру, отдельного включения для этого не предусмотрено.
Вообще передняя панель минималистична:


Верхний, красный дисплей - измеряемая (текущая) температура
Нижний, зеленый дисплей - заданная температура
Индикаторы слева по порядку сверху вниз:
1. Аварийная сигнализация 1
2. Выходной сигнал
3. Аварийная сигнализация 2
4. Индикатор работающей автонастройки PID
Кнопки слева направо: «настройка», «сдвиг», «вверх», «вниз».
Для установки заданной температуры нажимаем «настройку», все разряды нижнего дисплея кроме младшего начинают мерцать. Кнопками «вверх» и «вниз» выставляем в младшем разряде нужную цифру и нажимаем «сдвиг», теперь мерцают все разряды кроме десятков, настройка сдвигается на разряд влево. И так выставляем нужные цифры во всех разрядах. Для окончания настройки нажимаем еще раз «настройку».

Более подробные настройки вкратце

Как я писал в спойлере про PID-регулятор, коэффициенты такого регулятора - дело тонкое и подбирать их нужно для каждого случая. Изначальные настройки коэффициентов в этом регуляторе скорее всего не подойдут под ваше применение, нужно подбирать свои. Эти коэффициенты и другие параметры в регуляторе можно изменить в более глубоких настройках. Чтобы войти в этот режим нажмите и удерживайте кнопку «настройка» 3-4 секунды.
На верхнем дисплее название параметра, а на нижнем - текущее значение этого параметра. Настройка значения производится так же, как и настройка температуры - кнопками вверх-вниз меняем текущий разряд, потом кнопкой сдвига переходим к следующему и т.д. Для перехода к следующему параметру нажимаем «настройку». Для сохранения всех настроек и выхода из этого режима жмем и удерживаем 3-4 секунды кнопку «настройка».
Список параметров в той последовательности в которой они перебираются:

  • AL1 - настройка выхода первой аварийной сигнализации (в этой модели она одна, второй нет).
  • AГU - автонастройка PID

  • P - коэффициент Пс (пропорциональной составляющей ПИД), когда выставлен в 0 контроллер работает в дискретном режиме регулирования
  • I - коэффициент Ис (интегрирующей составляющей ПИД), когда установлен в 0 контроллер работает в режиме ПД
  • d - коэффициент Дс (дифференцирующей составляющей ПИД), когда установлен в 0 контроллер работает в режиме ПИ
  • Ar - насколько я понял, этот параметр задает максимум Ис, но не уверен, что понял правильно.
  • Г - тоже не совсем понял этот параметр, но похоже, что это период, с которым происходит измерение текущей температуры и соответствующее изменение выходного сигнала
  • SC - тут можно подкорректировать показания термопары, это значение добавляется к ним. Может быть как положительным, так и отрицательным числом.
  • LCK - блокировка настроек, 0000 - все настройки доступны, 0001 - изменить можно только заданную температуру и AL1, 0011 - изменить можно только заданную температуру, 0111 - изменить ничего нельзя.
и далее опять по кругу, начиная с AL1.
И в этих настройках можно изменить коэффициенты ПИД на требуемые. Однако чтобы знать на что их менять нужно очень хорошо понимать что делаешь и как это отразится на работе контроллера, или же долго и нудно перебирать их в надежде наткнуться на правильные значения. И чтобы облегчить жизнь простым смертным в контроллере предусмотрена автоматическая настройка этих коэффициентов.
Порядок проведения автонастройки:
Все условия должны быть приближены к реальным. То есть если Вы настраиваете для использования с духовкой, то духовка должна быть подключена, закрыта и температура на контроллере должна быть выставлена на максимальную (можно процентов на 10 меньше) из того диапазона, который предполагается применять в духовке. В процессе настройки контроллер нагреет духовку до этой температуры и подержит ее некоторое время.
Итак, подключили духовку (но пока не включаем ее нагреватели), выставили температуру (я установил 180 градусов), заходим в настройки, перебираем пункты пока не появится AГU, выставляем в 1 младший разряд и выходим из настроек. Начинает мигать индикатор AT. Теперь включаем нагреватели духовки и ждем пока мигание AT прекратится. Контроллер нагревает духовку постоянным нагревом до заданной температуры, выключает нагрев и следит за тем на сколько и как быстро температура превысит заданную после выключения нагрева. Исходя из скорости нагрева, «перескока» температуры и скорости дальнейшего остывания он и вычисляет коэффициенты ПИД. Этот процесс он может повторить 2-3 раза для уточнения.

Процесс автонастройки категорически рекомендуется после покупки или после изменения условий работы (другой нагревательный прибор, что-то изменили в текущем нагревателе и т.п., то есть все, что влияет на процесс нагрева). У меня до автонастройки контроллер вообще не мог довести температуру духовки до заданных 180 градусов. Провел автонастройку (видео ускороено в 10 раз):

И работа контроллера после этого (тоже ускорено в 10 раз):

Как видно, ПИД остался настроен не совсем оптимально (а никто и не обещал идеала:)), температура перескакивает по инерции заданную аж на 10 градусов. В дальнейшем при желании можно подкорректировать вычисленные им коэффициенты (что я и сделаю на домашней духовке), но при этом нужно понимать что и зачем менять.
Кстати, тот второй, более продвинутый контроллер (он видел слева на видео) справился с автонастройкой гораздо лучше, ничего корректировать не пришлось, перескок температуры на 200 градусах не превышает 2-3 градусов.

Есть и еще один уровень настроек, вход в него осуществляется нажатием и удержанием в течении 3-4 секунд одновременно кнопок «настройка» и «сдвиг». Но туда без необходимости лучше не лазить, а при необходимости внимательно сверяться с мануалом:)

Результат всей этой возни:)





Итог:
Контроллер своих денег стоит и с работой справляется очень неплохо, особенно если настроить его чуть более тонко, чем предполагает автонастройка. Твердотельное реле тоже отлично справляется с достаточно большой нагрузкой, хотя насчет заявленных 40 ампер у меня очень большие сомнения. Максимум 20, да и то с хорошим радиатором и его активным охлаждением.

Планирую купить +53 Добавить в избранное Обзор понравился +79 +139