Портал для автолюбителей

Конспект лекции "Индицирование двигателя. Расчет мощности."

Под индицированием понимается снятие с последующей обработкой индикаторных диаграмм, представляющих собой графическую зави-симость развиваемого в рабочем цилиндре давления в функции хода поршня S или пропорционального ему объема цилиндра V s (см. рис. 1 и 2).

Индикаторы «Майгак»

Диаграммы снимаются с каждого рабочего цилиндра с помощью спе-циального прибора — индикатора поршневого типа «Майгак». Наличие диаграммы позволяет определить важные для анализа рабочего процесса параметры Р i , Р с и Р макс. Диаграмма на рис. 1 типична для двигателей, при эксплуатации которых главная задача состояла в снижении уровня и содержания в выхлопе окислов азота. Для этого, как уже ранее отмечалось, осуществляется более поздний впрыск топлива и сгорание происходит с меньшим ростом давления и температур в камере сгорания.

Рис. 1 Индикаторная диаграмма двигателя МАН-БВ KL-MC

Если же главная цель состоит в повышении экономичности двигателя, то сгорание организуется с более ранней подачей топлива и, соответс-твенно, большим ростом давлений. При наличии электронной системы управления подачей топлива такая перестройка легко осуществляется.

На диаграмме рис. 2 четко видны два горба — сжатие и затем сгора-ние. Такой характер достигнут за счет еще более поздней подачи топлива. На рисунках приведены два вида диаграмм — свернутая, по которой оп-ределяется среднее индикаторное давление, и развернутая, позволяющая визуально оценить характер развития процессов. Подобные диаграммы можно получить при использовании поршневого индикатора «Майгак», для которого необходимо наличие , позволяющего


Рис. 2 Индикаторная диаграмма двигателя МАН-БВ SMC

синхронизировать вращение барабана индикатора с движением поршня индицируемого цилиндра. Подключение привода позволяет получить свернутую диаграмму, планиметрированием площади которой определя-ется среднее индикаторное давление , представляющее собой некоторое среднее условное давление, действующее на поршень и совершающее в течение одного хода работу, равную работе газов за цикл.

P i = F инд.д / L m, где F инд.д — площадь диаграммы, пропорциональная работе газов за цикл, L — длина диаграммы, пропорциональная величине рабочего объема цилиндра, m — масштабный множитель, зависящий от жесткости пружины поршня индикатора.

По P i подсчитывается индикаторная мощность цилиндра N i = C P i n , где η — число оборотов 1/мин и С — постоянная цилиндра. Эффективная мощность N e = N i η мех кВт, η мех -механический кпд двигателя, который можно найти в документации по двигателю.

Перед тем, как приступить к индицированию, проверьте состояние индикаторного крана и привода. Возможные ошибки в их состоянии проиллюстрированы на рис. 3.

Гребенка (рис. 2) снимается при ручном управлении шнуром, отсоединенным от индикаторного привода. Наличие гребенки поз-воляет оценить стабильность циклов и более точно замерить Р макс . Если пики одинаковы, то это свидетельствует о стабильной работе топливной аппаратуры.

Важно отметить, что поршневые индикаторы обладают малой часто-той собственных колебаний. Последняя должна,как минимум, в 30 раз превышать число оборотов двигателя. В противном случае индикатор-ные диаграммы будут сниматься с искажениями. Поэтому применение


Рис. 3 Ошибки в настройке привода индикатора

поршневых индикаторов ограничивается 300 об/мин. Индикаторы со стержневой пружиной обладают большей частотой собственных коле-баний и их применение допускается в двигателях с частотой вращения до 500-700 об/мин. Однако, в таких двигателях индикаторный привод отсутствует и приходится ограничиваться снятием гребенок или раз-вернутых диаграмм, по которым среднее не определить.

Второе ограничение касается величины максимального давления в цилиндрах. В современных двигателях с высоким уровнем форсировки оно достигает 15-18 МПа. При используемом в индикаторе «Майгак» пор-шне для дизелей диаметром 9,06 мм максимально жесткая пружина огра-ничивает Р макс = 15 МПа. При такой пружине точность измерения весьма низкая, так как масштаб пружины составляет 0,3 мм на 0,1 МПа.

Существенно также, что работа по индицированию довольно утоми-тельна и трудоемка, а точность результатов невысока. Малая точность обусловливается ошибками, возникающими из-за несовершенства инди-каторного привода и неточности обработки индикаторных диаграмм при их ручном планиметрировании. Для сведения — неточность индикатор-ного привода, выражающаяся в смещении ВМТ привода от ее истинного положения на 1°, приводит к ошибке примерно в 10%.

Основное отличие 2-тактного двигателя от 4-тактного заключается в способе газообмена – очистки цилиндра от продуктов сгорания и зарядки его свежим воздухом или горячей смесью.

Устройства газораспределения 2-тактных двигателей – щели во втулке цилиндра, перекрываемые поршнем, и клапаны или золотники.

Рабочий цикл:

После сгорания топлива начинается процесс расширения газов (рабочий ход). Поршень движется к нижней мертвой точке (НМТ). В конце процесса расширения поршень 1 открывает впускные щели (окна) 3 (точка b) или открываются выпускные клапана, сообщая полость цилиндра через выхлопную трубу с атмосферой. При этом часть продуктов сгорания выходит из цилиндра и давление в нем падает до давления продувочного воздуха Pd. В точке d поршень открывает продувочные окна 2, через которые в цилиндр подается смесь топлива с воздухом под давлением 1,23-1,42 бар. Дальнейшее падение замедляется, т.к. в цилиндр поступает воздух. От точки d до НМТ одновременно открыты выпускные и продувочные окна. Период, в течении которого одновременно открыты продувочные и выпускные окна, называется продувкой. В этот период цилиндр наполняется смесью воздуха, а продукты сгорания вытесняются из него.

Второй такт соответствует ходу поршня от нижней к верхней мертвой точке. В начале хода продолжается процесс продувки. Точка f – конец продувки – закрытие впускных окон. В точке а закрываются выпускные окна и начинается процесс сжатия. Давление в цилиндре к концу зарядки несколько выше атмосферного. Оно зависит от давления продувочного воздуха. С момента окончания продувки и полного перекрытия выпускных окон начинается процесс сжатия. Когда поршень не доходит на 10-30град по углу поволрота колен.вала до ВМТ (точка с /), в цилиндр через форсунку подается топливо или производится зажигание смеси и цикл повторяется.

При одинаковых размерах цилиндра и частоте вращения мощность 2-тактного значительно больше, в 1,5-1,7 раза.

Среднее давление теоретической диаграммы ДВС.

Среднее индикаторное давление ДВС.

Это такое условно постоянное давление, которое, действуя на поршень, совершает работу, равную внутренней работе газа в течение всего рабочего цикла.

Графически p i в определенном масштабе равно высоте прямоугольника mm / hh / , по площади равного площади диаграммы и имеющего ту же длину.

f- площадь индикаторной диаграммы (мм 2)

l- длина инд.диаграммы - mh

k p - масштаб давления (Па/мм)

Среднее эффективное давление ДВС.



Это произведение механического кпд на среднее индикаторное давление.

Где η мех =N e /N i . При нормальном режиме работы η мех =0,7-0,85.

Механический КПД ДВС.

η мех =N e /N i

Отношение эффективной мощности к индикаторной.

При нормальном режиме работы η мех =0,7-0,85.

Индикаторная мощность ДВС.

Инд. мощность двигателя, получаемая внутри уилиндра, может быть определена с помощью индикаторной диаграммы, снимаемой специальным прибором – индикатором.

Инд.мощность – работа, совершаемая рабочим телом в цилиндре двигателя в ед.времени.

Инд.мощность одного цилиндра -

k- кратность двигателя

V-рабочий объем цилиндра

n-число рабочих ходов.

Эффективная мощность ДВС.

Полезно используемая мощность, снимаемая с колен.вала

N e =N i -N тр

N тр – сумма потерь мощности на трение между движущимися деталями двигателя и на приведение в действие вспомогательных механизмов (насосов, генератора, вентилятора и др.)

Определение эф.мощности двигателя в лабораторных условиях или при стендовых испытаниях производят с помощью спец.тормозных устройств – механических, гидравлических или электрических.

30.09.2014


Рабочий цикл - совокупность тепловых, химических и газодинамических процессов, последовательно, периодически повторяющихся в цилиндре двигателя с целью преобразования тепловой энергии топлива в механическую энергию. Цикл включает пять процессов: впуск, сжатие, сгорание (горение), расширение, выпуск.
На тракторах и автомобилях, применяемых в лесной промышленности и лесном хозяйстве, устанавливаются дизельные и карбюраторные четырехтактные двигатели. Лесотранспортные машины, в основном, оснащаются четырехтактными дизельными двигателями,
В процессе впуска цилиндр двигателя заполняется свежим зарядом, представляющим собой очищенный воздух у дизельного двигателя или горючую смесь очищенного воздуха с топливом (газом) у карбюраторного двигателя и газодизеля. Горючей смесью воздуха с мелкораспыленным топливом, его парами или горючими газами должно обеспечиваться распространение фронта пламени во всем занятом пространстве.
В процессе сжатия в цилиндре сжимается рабочая смесь, состоящая из свежего заряда и остаточных газов (карбюраторные и газовые двигатели) или из свежего заряда, распыленного топлива и остаточных газов (дизели, многотопливные и с впрыском бензина двигатели и газодизели).
Остаточными газами называются продукты сгорания, оставшиеся после завершения предыдущего цикла и участвующие в следующем цикле.
В двигателях с внешним смесеобразованием рабочий цикл протекает за четыре такта: впуска, сжатия, расширения и выпуска. Такт впуска (рис. 4.2а). Поршень 1, под воздействием вращения коленчатого вала 9 и шатуна 5, перемещаясь к НМТ, создает разряжение в цилиндре 2, в результате чего свежий заряд горючей смеси поступает по трубопроводу 3 через впускной клапан 4 в цилиндр 2.

Такт сжатия (рис. 4.2б). После заполнения цилиндра свежим зарядом впускной клапан закрывается, а поршень, перемещаясь к ВМТ, сжимает рабочую смесь. При этом в цилиндре повышаются температура и давление. В конце такта рабочая смесь воспламеняется от искры, возникающей между электродами свечи 5, и начинается процесс сгорания.
Такт расширения или рабочий ход (рис. 4.2e). В результате сгорания рабочей смеси образуются газы (продукты сгорания), температура и давление которых резко возрастают к приходу поршня в ВМТ. Под воздействием высокого давления газов поршень перемещается к НМТ, при этом совершается полезная работа, передаваемая на вращающийся коленчатый вал.
Такт выпуска (см. рис. 4.2г). В этом такте происходит очистка цилиндра от продуктов сгорания. Поршень, перемещаясь к ВМТ, через открытый выпускной клапан 6 и трубопровод 7 выталкивает продукты сгорания в атмосферу. В конце такта давление в цилиндре незначительно превышает атмосферное давление, поэтому в цилиндре остается часть продуктов сгорания, которые смешиваются с горючей смесью, заполняющей цилиндр при такте впуска следующего рабочего цикла.
Принципиальное отличие рабочего цикла двигателя с внутренним смесеобразованием (дизельных, газодизельных, многотопливных) состоит в том, что на такте сжатия топливоподающая аппаратура системы питания двигателя впрыскивает мелкораспыленное жидкое моторное топливо, которое перемешивается с воздухом (или смесью воздуха с газом) и воспламеняется. Высокая степень сжатия двигателя с воспламенением от сжатия позволяет нагреть рабочую смесь в цилиндре выше температуры самовоспламенения жидкого топлива.
Рабочий цикл двухтактного карбюраторного двигателя (рис. 4,3) применяемого для пуска дизеля трелевочного трактора, совершается за два хода поршня или за один оборот коленчатого вала. При этом один такт является рабочим, а второй - вспомогательным. В двухтактном карбюраторном двигателе отсутствуют впускной и выпускной клапаны, их функцию выполняют впускное, выпускное и продувочные окна, которые открываются и закрываются поршнем при его движении. Через эти окна рабочая полость цилиндра сообщается с впускными и выпускными трубопроводами, а также с герметичным картером двигателя.


Индикаторная диаграмма. Рабочий или действительный цикл двигателя внутреннего сгорания отличается от теоретического, изучаемого в термодинамике, свойствами рабочего тела, представляющего собой реальные газы переменного химического состава, скоростью подвода и отвода тепла, характером теплообмена между рабочим телом и окружающими его деталями и другими факторами.
Действительные циклы двигателей графически изображаются в координатах: давление - объем (р, V) или в координатах: давление - угол поворота коленчатого вала (р, φ). Такие графические зависимости от указанных параметров называются индикаторными диаграммами.
Наиболее достоверные индикаторные диаграммы получаются экспериментально, приборными методами, непосредственно на двигателях. Индикаторные диаграммы, полученные расчетным путем на основании данных теплового расчета, отличаются от действительных циклов вследствие несовершенства методов расчета и применяемых допущений.
На рис. 4.4 приведены индикаторные диаграммы четырехтактных карбюраторного и дизельного двигателей.


Контур г, а, с, z, b, r представляет собой диаграмму рабочего цикла четырехтактного двигателя. Она отражает пять чередующихся и частично перекрывающих друг друга процессов: впуск, сжатие, сгорание, расширение и выпуск. Процесс впуска (r, а) начинается до прихода поршня в BMT (около точки r) и заканчивается после HMT (в точке k). Процесс сжатия заканчивается в точке с, в момент воспламенения рабочей смеси у карбюраторного двигателя или в момент начала впрыска топлива у дизеля. В точке с начинается процесс сгорания, который заканчивается после точки r. Процесс расширения или рабочий ход (r, b) заканчивается в точке b. Процесс выпуска начинается в точке b, т. е. в момент открытия выпускного клапана, и заканчивается за точкой r.
Площадь r, а, с, b, r построена в координатах p-V, следовательно, в определенном масштабе характеризует работу, развиваемую газами в цилиндре. Индикаторная диаграмма четырехтактного двигателя состоит из положительной и отрицательной площадей. Положительная площадь ограничена линиями сжатия и расширения k, с, z, b, k и характеризует полезную работу газов; отрицательная ограничена линиями впуска и выпуска и характеризует работу газов, затрачиваемую на преодоление сопротивления при впуске и выпуске. Отрицательная площадь диаграммы незначительна, ее величиной можно пренебречь, а вычисление производить только по контуру диаграммы. Площадь этого контура эквивалентна индикаторной работе, ее планиметрируют для определения среднего индикаторного давления.
Индикаторной работой цикла называют работу за один цикл, определяемую по индикаторной диаграмме.
Среднее индикаторное давление - это такое условное постоянно действующее давление в цилиндре двигателя, при котором работа газа за один ход поршня равна индикаторной работе цикла.
Среднее индикаторное давление р определяется по индикаторной диаграмме:
  • 2. Процессы газообмена 2-х и 4-х тактных дизельных двигателей. Понятие наддува. Импульсный газотурбинный и наддув при постоянном давлении. Коэффициент избытка воздуха.
  • 3. Генераторы судовой электростанции. Техническое обслуживание щеточного аппарата синхронного генератора.
  • 2. Принцип работы холодильной установки. Холодильные агенты и хладоносители.
  • 3. Техническое обслуживание кислотных аккумуляторных батарей (акб).
  • 4. Техническое обслуживание судовых помещений.
  • 1. Международная конвенция о грузовой марке 1966 года.
  • 3. Измерение сопротивления изоляции электрооборудования. Техническое обслуживание распределительных устройств.
  • 4.Техническое обслуживание судовых систем.
  • 1.Категории затопленных отсеков. Влияние свободной поверхности на остойчивость на больших углах крена.
  • 2.Судовые паровые котлы: классификация, устройство водотрубных, огнетрубных, комбинированных и утилизационных котлов, устройства для сжигания топлива в котлах.
  • Процесс сгорания топлива
  • Подача воздуха
  • Сгорание топлива
  • 3. Средства, обеспечивающие распределение нагрузки при параллельной работе генераторов.
  • 4.Осмотр судна в доке и на плаву.
  • 1. Конструктивные меры противопожарной безопасности.
  • 2.Основные термодинамические процессы для идеальных газов.
  • 3.Судовые силовые трансформаторы.
  • 4.Техническое обслуживание дизелей и их отдельных сборочных единиц и деталей.
  • 1. Конвенция солас.
  • 2. Цикл Карно.
  • 3. Техническое обслуживание взрывозащищенного электрооборудования и сетей. Осмотры электрооборудования
  • 4.Очистки, осмотры и испытания котлов.
  • 1. Международный кодекс по спасательным средствам. Индивидуальные и коллективные спасательные средства.
  • 3. Аварийные дизель - генераторы и система их автоматического запуска.
  • 4.Техническое обслуживание элементов котла.
  • 1. Международная конвенция марпол по предотвращению загрязнения с судов. Судовые документы по пзм, сроки их действия, возобновление документов.
  • 2.Основные понятия о машинах и механизмах. Кинематическая пара, кинематическая цепь. Виды передач.
  • 3. Классификация полупроводниковых преобразователей электроэнергии.
  • 4.Техническое обслуживание вспомогательных механизмов и оборудования.
  • 2. Сопротивление материалов: виды деформаций, напряжений, нагрузок.
  • 3. Частотные преобразователи для управления асинхронными электродвигателями.
  • 4.Смазывание вспомогательных механизмов и оборудования, техническое обслуживание подшипников.
  • 1. Судовые системы, предназначенные для предотвращения возникновения или распространения пожара. Средства пожаротушения на судах и их классификация. Противопожарное снабжение.
  • 2.Детали машин: детали и узлы общего и специального назначения, виды соединений.
  • 3. Щитовые электроизмерительные приборы (эп). Подключение электроизмерительных приборов. Погрешность результата измерения.
  • 4.Техническое обслуживание холодильных установок. Удаление хладона. Наполнение системы хладоном и дозарядка.
  • 1. Классификация судовых помещений по назначению. Размещение помещений в основном корпусе судна.
  • 2. Основные неподвижные и подвижные детали судовых дизелей.
  • 3. Электрическое освещение – основное и аварийное. Судовые электронагревательные и отопительные приборы и устройства. Обслуживание и предъявляемые к ним требования.
  • 4. Система технического обслуживания судна. Общие требования по то судна. План-графики по то стс и к.
  • 1. Судовые документы, требуемые ктм рф. Судовые документы, выдаваемые рмрс России в соответствии с требованиями мк солас 74/88 с поправками. Мппсс-72 и регламента радиосвязи 1997 г.
  • 2. Подготовка дизельной установки к действию после длительной стоянки, во время которой производились работы, связанные с разборкой. Подготовка дизельной установки к действию в зимнее время.
  • 3. Режимы работы судовых электроприводов. Факторы, обеспечивающие нормальную работу судовых электрических машин. Защита электродвигателей в электроприводах.
  • 4. Надзор за судами в эксплуатации. Использование результатов в процессе технического надзора за судами.
  • 2. Работа дизеля в режимах и условиях, отличных от нормальных. Подготовка к манёврам и остановка дизельной установки.
  • 3. Приборы контроля и сигнализации. Датчики и индикаторы, применяемые в судовых системах. Аварийно-предупредительная сигнализация (апс).
  • 4. Виды и порядок прохождения инструктажа по технике безопасности.
  • 1. Мкуб - его цели и требования. Основные резолюции имо по внедрению мкуб.
  • International Management Code for the Safe Operation of Ships and for Pollution Prevention (International Safety Management (ism) Code) » - мкуб
  • 2. Ввод дизеля в режим эксплуатационной нагрузки. Работа гд и обслуживающих его систем в сложных условиях.
  • 3. Средства автоматики и дистанционного управления. Готовность к действию и ввод в действие электрических систем автоматики. Основные требования к системам дау.
  • 4. Техника безопасности при обслуживании дизельных установок.
  • 1. Система управления безопасностью судоходной компании. Назначенное лицо. Национальные нормативные документы по внедрению мкуб.
  • 2. Контроль и регулировка параметров рабочего процесса судовых дизелей.
  • 3. Техническая документация по судовому электрооборудованию, виды технической документации. Электрические схемы и чертежи, их отличие друг от друга.
  • 4. Работа главной дизельной установки в аварийных условиях и во время обкатки.
  • 1. Международная конвенция марпол-73/78: правила регистрации операций с нефтью и нефтепродуктами. Ответственность и контроль.
  • 2.Подготовка котла к действию, обслуживание котла в действии, вывод котла из действия.
  • 3. Проверки работы адг, сети аварийного освещения, авральной и пожарной сигнализации, водонепроницаемых дверей; периодичность проверок.
  • 1. Кодекс торгового мореплавания рф. Устав службы на судах ммф. Дисциплинарный устав.
  • 2. Обслуживание котла на режимах, отличных от нормальных. Водный режим котла. Меры предосторожности при упуске воды из котла. Хранение бездействующего котла.
  • 3. Электробезопасность. Защита от поражения электрическим током, защитное заземление. Диэлектрические средства защиты, периодичность проверок их на электрическую прочность.
  • 4. Контроль технического состояния корпусных конструкций. Виды и методы неразрушающего контроля и диагностики технического состояния корпуса и конструкций судна.
  • 2.Типы насосов, входящих в состав судовых систем. Птэ насосов по типам.
  • 3. Функции элементов сар и назначение. Система дистанционного автоматического управления гд.
  • 4. Требования птэ по технической эксплуатации и обслуживанию машинных и котельных помещений. Предремонтная дефектация элементов корпуса судна, организация и этапы выполнения.
  • 1. «Наставление по предотвращению загрязнения с судов». Пломбирование клапанов на судне. Бункеровочные операции.
  • 2. Работа гд с выключенными цилиндрами. Регулировка параметров рабочего процесса гд.
  • 4. Взаимодействие должностных лиц в процессе ремонта. Доковый ремонт. Доковый ремонт
  • 2. Работа гд с перегрузкой. Работа гд в режиме холостого хода. Подготовка гд к маневрам и остановке.
  • 3. Аварийный безбатарейный телефон для связи мостик-цпу- румпельная. Частоты судовой рабочей носимой укв.
  • 4. Написание ремонтной ведомости. Проведение тендера на ремонт судна. Распределение обязанностей на предстоящий ремонт судна.
  • 2. Указания по техническому обслуживанию вентиляторов и поршневых компрессоров.
  • 3. Общая характеристика рулевых электроприводов и требования к ним.
  • 4. Испытания судна после ремонта. Окончание ремонта на заводе. Гарантийный период после ремонта.
  • 1. Якорное устройство, назначение и состав. Общие сведения и классификация. Швартовное устройство. Общие сведения, назначение и классификация. Якорное устройство.
  • Якорная цепь.
  • 2. Указания по техническому обслуживанию теплообменных аппаратов, фильтров, сосудов под давлением и тормозных устройств.
  • 3. Подготовка грузовых устройств к работе. Электрическое торможение грузоподъемников переменного тока.
  • Среднее эффективное Ре давление это давление которое зависит от количества топлива впрыскиваемого в цилиндр.

    Эффективная мощность Ре - мощность, снимаемая с соединительного фланца вала двигателя, т. е. отдаваемая валопроводу, генератору или любому потребителю энергии на данном режиме работы

    Индикаторная мощность Рz - мощность развиваемая газами внутри рабочих цилиндров двигателя, называют индикаторной.

    3. Основные электрические величины – электрический ток, напряжение, мощность

    электрического тока, единицы измерения.

    ЭЛЕКТРИ́ЧЕСКИЙ ТОК - УПОРЯДОЧЕННОЕ НЕКОМПЕНСИРОВАННОЕ ДВИЖЕНИЕ СВОБОДНЫХ ЭЛЕКТРИЧЕСКИ ЗАРЯЖЕННЫХ ЧАСТИЦ ПОД ВОЗДЕЙСТВИЕМ ЭЛЕКТРИЧЕСКОГО ПОЛЯ.

    НАПРЯЖЕНИЕ – КОЛЛИЧЕСТВО ЭНЕРГИИ ЗАТРАЧИВАЕМОЕ НА ПЕРЕМЕЩЕНИЕ ИЗ ОДНОЙ ТОЧКИ В ДРУГУЮ.

    МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА – СКОРОСТЬ ИЗМЕНЕНИЯ ЭНЕРГИИ. МОЩНОСТЬ ЭЛЕКТРИЧЕСКОГО ТОКА РАВНА РАБОТЕ ЭЛЕКТРИЧЕСКОГО ТОКА, ПРОИЗВОДИМОЙ В ТЕЧЕНИЕ ОДНОЙ СЕКУНДЫ.

    4. Общие требования к техническому обслуживанию стс и к.

    ПОД СУДОВЫМИ ТЕХНИЧЕСКИМИ СРЕДСТВАМИ ПОНИМАЮТСЯ УСТАНОВКИ, АГРЕГАТЫ, МЕХАНИЗМЫ И ДРУГОЕ ОБОРУДОВАНИЕ СУДНА, ОБЕСПЕЧИВАЮЩИЕ ЕГО РАБОТОСПОБНОСТЬ В СООТВЕТСТВИИ С НАЗНАЧЕНИЕМ.

    1. Общие положения 1.1. Техническая эксплуатация судовых технических средств и конструкций (СТС и К) должна производиться в соответствии с инструкциями заводов-изготовителей и требованиями настоя­щих Правил.

    1.2. Все операции связанные с вводом в действие, изменени­ем режимов работы, выводом из действия, проворачиванием и разборкой технических средств, должны производиться с разре­шения, по указанию или с извещением должностных лиц (капитана, вахтенного помощника капитана, старшего механи­ка, вахтенного механика, ответственного по заведованию), если это предусмотрено соответствующими пунктами Правил или другими документами, регламентирующими действия судового экипажа. 1.3. Бездействия, связанные с техническим использованием, обслуживанием и ремонтом СТСиК должны регистрироваться вахтенным механиком в машинном журнале. 1.4. На судне должен быть организован учет технического со­стояния СТСиК а также учет наличия и движения сменно-запасных частей и предметов, материально-технического снабжения по заведованиям.

    1.5. При в воде в действие оборудования, убедиться что оборудование исправно, КИП исправны и так далее.

    БИЛЕТ 2.

    1. Посадка и остойчивость судна, теоретические основы. Остойчивость, метацентрическая высота. Информация об остойчивости.

    ОСТО́ЙЧИВОСТЬ - способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия.

    Судно плавает на поверхности воды под действием двух основных сил: силы тяжести и Архимедовой силы. Сила тяжести -“тянет судно вниз”, равна его весу и приложена к центру тяжести судна ЦТ. Сила плавучести или Архимедова сила –“выталкивает судно из воды”, равна его водоизмещению и приложена в центре подводного объема ЦВ судна.

    В “прямом” положении судна эти силы уравновешивают друг друга и лежат на одной вертикальной линии. При крене форма подводной части корпуса изменится, ЦВ сместится в сторону накрененного борта, и возникнет так называемыйвосстанавливающий момент, который противодействует крену. При наклонении судна ЦВ как бы поворачивается вокруг точки, называемой метацентром m.

    Расстояние от метацентра m до центра тяжести ЦТ (метацентрическая высота) является характеристикой остойчивости судна. Чем меньше судно, тем больше должна быть метацентрическая высота. Чем ниже расположен центр тяжести, тем судно остойчивее. Существует простое правило: КАЖДЫЙ КИЛОГРАММ ПОД ВАТЕРЛИНИЕЙ ПОВЫШАЕТ ОСТОЙЧИВОСТЬ, А КАЖДЫЙ КИЛОГРАММ НАД ВАТЕРЛИНИЕЙ УХУДШАЕТ ЕЕ.

  • СХЕМА РАБОТЫ 4-Х ТАКТНОГО ДИЗЕЛЯ.

    МАРКИРОВКА ДВС.

    Маркировка отечественных дизелей производится по ГОСТу 4393-74. Каждый тип двигателя имеет условное буквенное и цифровое обозначение:

    Ч - четырёхтактный

    Д - двухтактный

    ДД - двухтактный двойного действия

    Р - реверсивный

    С - с реверсивной муфтой

    П - с редукторной передачей

    К - крейцкопфный

    Н - с наддувом

    Г - для работы на газовом топливе

    ГЖ - для работы на газожидкостном топливе

    Цифры впереди букв обозначают число цилиндров; цифры после букв - диаметр цилиндра / ход поршня в сантиметрах. Например: 8ДКРН 74/160, 6ЧСП 18/22, 6Ч 12/14

    Маркировка иностранных дизелестроительных фирм:

    Двигатели завода SKL германии (бывшего ГДР)

    Четырёхтактными ДВС называются двигатели, у которых один рабочий ход (такт) осуществляется за четыре хода поршня, или два оборота коленчатого вала. Тактами являются: впуск (наполнение), сжатие, рабочий ход (расширение), выпуск (выхлоп).

    I такт - НАПОЛНЕНИЕ . Поршень движется от ВМТ к НМТ, вследствие чего в надпоршневой полости цилиндра создаётся разряжение, и через открытый впускной (всасывающий) клапан воздух из атмосферы поступает в цилиндр. Объем в цилиндре все время увеличивается. За НМТ клапан закрывается. В конце процесса наполнения воздух в цилиндре имеет следующие параметры: давление Pa=0,85-0,95 кг/см 2 , (86-96 кПа); температура Ta=37-57°C (310-330 K).

    II такт - СЖАТИЕ . Поршень движется в обратном направлении и сжимает свежий заряд воздуха. Объем в цилиндре уменьшается. Давление и температура повышаются до значений: Pc=30-45кг/см 2 , (3-4 МПа); Tc = 600-700°C (800-900 K). Эти параметры должны быть такими, чтобы произошло самовоспламенение топлива.

    В конце процесса сжатия в цилиндр двигателя из форсунки под большим давлением 20-150 МПа (200-1200 кг/см 2) впрыскивается мелкораспыленное топливо, которое самовоспламеняется под действием высокой температуры и быстро сгорает. Таким образом в течение второго такта происходит сжатие воздуха, подготовка топлива к сгоранию, образование рабочей смеси и начало её горения. В результате процесса горения параметры газа возрастают до значений: Pz=55-80кг/см 2 , (6-8,1 МПа); Tz=1500-2000°C (1700-2200 K).

    III такт - РАСШИРЕНИЕ . Под действием усилий, возникающих от давления продуктов сгорания топлива, поршень движется к НМТ. Тепловая энергия газов преобразуется в механическую работу перемещения поршня. В конце такта расширения параметры газа снижаются до значений: Pb=3,0-5,0кг/см 2 , (0,35-0,5 МПа); Tb=750-900°C (850-1100 K).

    IV такт - ВЫПУСК . В конце такта расширения (до НМТ) открывается выпускной клапан и газы, имеющие энергию и давление больше атмосферного, устремляются в выпускной коллектор, причём, при движении поршня к ВМТ происходит принудительное удаление выхлопных газов поршнем. В конце такта выпуска параметры в цилиндре будут следующие: давление P 1 =1,1-1,2кг/см 2 , (110-120кПа); температура T 1 =700-800°C (800-1000 K). За ВМТ выпускной клапан закрывается. Рабочий цикл закончен.


    В зависимости от положения поршня изменение давления в цилиндре двигателя можно изобразить графически в координатных осях PV (давление - объём) замкнутой кривой, которая называется индикаторной диаграммой. На диаграмме каждая линия соответствует определённому процессу (такту):

    1-a - процесс наполнения;

    a-c - процесс сжатия;

    c-z" - процесс горения при постоянном объёме (V=const);

    z"-z - процесс горения при постоянном давлении (P=const);

    z-b - процесс расширения (рабочий ход);

    b-1 - процесс выпуска;

    Po - линия атмосферного давления.

    Примечание: если диаграмма расположена выше линии Po, то двигатель оборудован системой наддува и имеет большую мощность.

    Крайние положения поршня (ВМТ и НМТ) изображены пунктирными линиями.

    Объемы, занятые рабочим телом, в любом положении поршня и заключенные между его донышком и цилиндровой крышкой, откладываются на оси абцисс диаграммы, которые имеют следующие обозначения:

    Vc – объем камеры сжатия; Vs – рабочий объем цилиндра;

    Va. – полный объем цилиндра; Vx – объем над поршнем в любой момент его движения. Зная положение поршня всегда можно определить над ним объем цилиндра.

    На оси ординат (в выбранном масштабе) откладывают давления в цилиндре.

    Рассматриваемая индикаторная диаграмма показывает теоретический (расчетный) цикл, где приняты допущения, т.е. такты начинаются и заканчиваются в мертвых точках, поршень находится в ВМТ, камера сгорания заполнена остатками отработавших газов.

    В реальных двигателях моменты открытия и закрытия клапанов начинаются и заканчиваются не в мёртвых точках положения поршня, а с определённым смещением, что наглядно видно на круговой диаграмме газораспределения. Моменты открытия и закрытия клапанов, выраженные в градусах поворота коленчатого вала (п.к.в.) называют фазами газораспределения. Оптимальные углы открытия и закрытия клапанов, а также начала подачи топлива определяются экспериментальным путём при испытании опытного образца на стенде завода-изготовителя. Все углы (фазы) указываются в формуляре двигателя.

    К моменту поступления заряда воздуха в цилиндр двигателя открывается всасывающий клапан. Точка 1 соответствует положению кривошипа в момент открытия клапана. Для лучшего наполнения цилиндра воздухом всасывающий клапан открывается до ВМТ и закрывается после перехода поршнем НМТ на угол равный 20-40° п.к.в., который обозначается как угол опережения и запаздывания впускного клапана. Обычно угол п.к.в. соответствует процессу впуска равного 220-240°.Когда клапан закрывается наполнение цилиндра заканчивается и кривошип занимает положение, соответствующее точке (2).

    После процесса сжатия для самовоспламенения топлива требуется время на его нагревание и испарение. Такой промежуток времени называется периодом задержки самовоспламенения. Поэтому впрыск топлива производится с некоторым опережением до момента прихода поршня в ВМТ на угол 10-35° п.к.в.

    УГОЛ ОПЕРЕЖЕНИЯ ПОДАЧИ ТОПЛИВА

    Угол между направлением кривошипа и осью цилиндра в момент начала впрыска топлива называют углом опережения подачи топлива. УОПТ отсчитывается от начала подачи до ВМТ и зависит от системы подачи, сорта топлива и частоты вращения вала двигателя. УОПТ у дизелей бывает от 15 до 32° и имеет большое значение на работу ДВС. Очень важно определить оптимальный угол опережения подачи, который должен соответствовать значению завода-изготовителя, указанному в паспорте двигателя.

    Оптимальный УОПТ имеет большое значение для нормальной работы двигателя и его экономичности. При правильном регулировании горение топлива должно начинаться до прихода поршня в ВМТ на 3-6° п.к.в. Наибольшее давление Pz, равное расчётному, достигается когда поршень перейдёт ВМТ на угол 2-3° п.к.в. (см."Фазы горения").

    При увеличении УОПТ период задержки самовоспламенения (I-я фаза) увеличивается и основная масса топлива сгорает в момент перехода поршнем ВМТ. Это приводит к жёсткой работе дизеля, а также к повышенному износу деталей ЦПГ и КШМ.

    Уменьшение УОПТ ведёт к тому, что основная часть топлива поступает в цилиндр при переходе поршнем ВМТ и горит в большем объёме камеры сгорания. Тем самым уменьшается цилиндровая мощность двигателя.

    После процесса расширения для уменьшения затрат на выталкивание отработавших газов поршнем производится открытие выпускного клапана с опережением до прихода поршнем в НМТ на угол равный 18-45° п.к.в., который называют углом опережения открытия выпускного клапана. Точка (). Для лучшей очистки цилиндров от продуктов сгорания выпускной клапан закрывается после перехода поршнем ВМТ на угол запаздывания равный 12-20° п.к.в., соответствующей точке () на круговой диаграмме.

    Однако, из диаграммы видно, что всасывающий и выпускной клапана некоторое время находятся одновременно в открытом положении. Такое открытие клапанов называют углом перекрытия фаз клапанов, который составляет в сумме 25-55° п.к.в.